Welcome to **BUILD UP**

The European Portal for Energy Efficiency in Buildings

Join Europe's largest international portal to discuss, contribute and collaborate with other experts in this field.

An opportunity to grow your network, boost your visibility, influence markets and stakeholders, exchange your expertise and promote best practices.

BUILD UP The European Portal For Energy Efficiency In Buildings $\langle 0 \rangle$

View all

Check our Learn section!

DC

Last one!

Webinar 6, Sept. 8 2020– Heating systems in the EPB standards

Webinar 7, Tuesday Oct. 6, Example calculations with the set of EPB standards – (1) Introduction and overarching calculation procedures

Webinar 8, Tuesday Oct. 20, Example calculations with the set of EPB standards – (2) Energy needs combined with specific systems

Webinar 9, Tuesday Jan. 19, Example calculations with the set of standards – (3) Whole building calculations, from components primary energy

Webinar 10, Tuesday Feb. 2, Example calculations with the set of EPB standards – (4) Energy needs combined with specific systems

The European Portal For Energy Efficiency In Buildings

WEBINAR

Example calculations with the set of EPB standards (IV)

Focus on non-residential buildings

12h00 – **General introduction** by the moderator (*overview*, *practical information on participation* (*Q&A*), *etc.*)

12h05 – **Brief introduction,** by Jaap HOGELING, Chairperson CEN/TC 371, Energy Performance of Buildings project group, European Committee for Standardization (CEN)

12h10 – Specific features of the calculation of energy needs for heating and cooling for non-residential buildings, by Dick VAN DIJK, EPB expert, EPB Center

12h20 – Integrated application of the EPB standards on energy needs, ventilation and air heating and cooling; demonstration, by Gerhard ZWEIFEL, EPB expert, Professor emeritus Lucerne University of Applied Sciences and Arts

12h45 – From component to overall energy performance – the modular approach, by Laurent SOCAL, independent EPB expert

13h00 – Moderated Q&A

Your service center for information and technical support on the new set of EPB standards

Energy Performance of Buildings standards (EN/ISO) supporting the implementation of the EPBD

Jaap Hogeling <u>Manager international standards at ISSO</u> Chair CEN/TC 371 Energy Performance of Buildings Member ISO/TC 163/WG 4: Joint Working Group (JWG) between ISO/TC 163 and ISO/TC 205: Energy performance of buildings using holistic approach j.hogeling@isso.nl

The EPB Center is supported by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185 Start 21 September 2018 for 3 years www.epb.center **BUILD UP Webinar series**

Webinar 10 – Example calculations with the set of EPB standards – (4) Focus on non-residential buildings 02/02/2021

- CEN/TC 371: Energy Performance of Buildings, chairperson since 2004
 - Project leader of the EU Mandate/480 to CEN regarding the development of the set of EPB standards.

- Participation in 5 CEN/TC's and 2 ISO/TC's related to Energy Performance of Buildings
- Manager international standards at ISSO, Rotterdam, the Netherlands
- Initiator of EPB Center (an initiative of ISSO and REHVA)
- Fellow of ASHRAE and REHVA

The goal of example calculations is to demonstrate:

- the **functionality** : to demonstrate that the calculation works with practical cases and available features to describe energy performance of buildings and HVAC installations
- the **sensitivity** of the calculation procedure: what is the impact of single data or group of data on selected calculation results
- the usability: demonstrate the data input (avoiding unnecessary input complexity), description of practical system configurations, show useful results.

of individual calculation modules and of the whole building calculation procedure.

In this 10th webinar we will focus on EP calculation for non-residential building case

The EPB Center experts : Mr. Dick van Dijk, Professor emeritus Gerhard Zweifel, Mr Laurent Socal will focus on the following:

- Dick van Dijk will demonstrate how the EN ISO 52016-1 is suited for residential and non-residential buildings alike.
- Gerhard Zweifel will demonstrate the integrated application of the EPB standards on energy needs, ventilation and air heating and cooling;
- Laurent Socal will illustrate the modular approach from component to overall energy performance

- The EP calculation standards are great tools.
- The presentations will demonstrate that using hourly calculation methods correctly, you can extract a lot of useful information to decide on the best building and system design by comparing different possible solutions.

Thank you!

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

This document has been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185).

Disclaimer: The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Your service center for information and technical support on the new set of EPB standards

Specific features of the calculation of energy needs for heating and cooling for non-residential buildings

Dick van Dijk

dick.vandijk@epb.center

This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185 Start: 21 September 2018 for 3 years BUILD UP Webinar series Webinar 10: Example calculations with the set of EPB standards – (4) Focus on nonresidential buildings, 2nd February 2021

- EPB Center expert (> 2017)
- Involved in initiation, preparation and coordination of set of EPB standards (2012-2017)
- Co-convenor of ISO Joint Working Group on the overall set of EN ISO EPB standards, in collaboration with CEN ISO/TC 163 & ISO/TC 205, CEN/TC 371
- Convenor of ISO Working Group responsible for few key EPB standards:

Energy needs heating/cooling, Climatic data, Partial EP indicators (ISO/TC 163/SC 2/WG 15)

EPB standard EN ISO 52016-1: heating and cooling needs and indoor temperatures

- Today: some answers to questions:
 - Is it only suited for residential buildings?
 - What can the demo spreadsheet be used for?

Available at website

- Basics of the hourly calculation method in EN ISO 52016-1
- Main feautures of the spreadsheet, now with illustrations
- Illustrate use of different climates and use patterns
 - Current spreadsheet and work in progress
- Link to systems (briefly)

Remember: EN ISO 52016-1: parallel

hourly and monthly calculation methods

Hourly calculation of

- energy needs for heating and cooling
- both sensible and latent heat
- indoor temperatures
- heating and cooling load

Same input data and boundary conditions

Monthly calculation of energy needs for heating and cooling

- using national correlation
 factors to take into account
 dynamic effects
 - E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ..

Remember:

EN ISO 52016-1: parallel

hourly and monthly calculation methods

Hourly calculation of

- energy needs for heating and cooling
- both sensible and laten heat
- indoor temperatures
- beating and cooling load

Same input data and boundary conditions

Extra output:

• Monthly characteristics

Monthly calculation of energy needs for heating and cooling

- using national correlation
 factors to take into account
 dynamic effects
 - E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ..

Remember:

EN ISO 52016-1: parallel

hourly and monthly calculation methods

Hourly calculation of

- energy needs for heating and cooling
- both sensible and laten heat
- indoor temperatures
- heating and cooling load

Same input data and boundary conditions

Extra output:

- Monthly characteristics
- Can be used as basis for generating or validating correlation factors for monthly method

Monthly calculation of energy needs for heating and cooling

- using national correlation factors to take into account dynamic effects
 - E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ..

Remember: EN ISO 52016-1: parallel

hourly and monthly calculation methods

Hourly calculation of

- energy needs for heating and cooling
- both sensible and laten heat
- indoor temperatures
- beating and cooling load

Same input data and boundary conditions

Extra output:

- Monthly characteristics
- Can be used as basis for • generating or validating correlation factors for, monthly method Interested in hourly

versus monthly

Pacerding of webinar 4

calculations?

Monthly calculation of energy needs for heating and cooling

- using national correlation factors to take into account dynamic effects
 - E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ...

Hourly calculation method in EN ISO 52016-1

- Similar to building simulation tools:
- Overall energy balance is calcuated each hour
 - Dynamic heat transfer through each (opaque or transparent) building element
 - Interaction with solar and internal gains, with outdoor climate, with indoor air
 - → calculation each hour: energy load for heating or cooling on basis of min. and max. temperature
 - Similar for latent heat: (de)humidification load on basis of min. and max. humidity
 - All construction elements interact:
 - Mutually
 - with indoor air
 - With incident solar radiation

Similar as building simulation tools

- Detailed model, similar as for building simulation tools
- Quick illustrations: "resistance-capacitance" model:
 - Each construction element divided into N nodes (~ [N-1] layers)
 - Per thermal zone: If M construction elements: M x N nodes plus indoor air node
 - At each hour: → M x N interrelated energy balance equations solved to obtain the temperatures at all nodes and the heating and cooling load
- Alternative equivalent models are allowed

Illustration:Model of construction element

Nr of layers , each with thermal resistance, capacitance, absorptance of solar radiation (if transparent), etc. (fig. from CEN ISO/TR 52016-2)

Illustration: Inside thermal zone

Interaction between all construction elements and indoor air

Multiple thermal zones possible, based on (national) zoning rules

Alternative modelling allowed

- Alternative modelling techniques are allowed
- (national choice, acc.to template in Annex A)

Table A.10 — Alternative choices in modelling (see 6.5.5.2, 6.5.6.3.1 and 6.5.7.1)

Description	Choice	If choice is No, describe or give reference to the applied alternative meth- od
Use the method in <u>6.5.5.2</u> to calculate the actual temperatures and loads	Yes/No	<free text=""></free>
Use method in $\underline{6.5.6.3.1}$ for the calculation of the thermal (longwave) radiation exchange	,	<free text=""></free>
Use method in <u>6.5.7.1</u> for the conversion of physical properties of building elements into properties per layer (node)	Yes/No	<free text=""></free>
NOTE In case of one or more "No", the pro- subclause.	ocedures are validated using the validation c	ases in <u>7.2</u> , as described in that

Different from most building simulation tools

- Model is tailored to the needs (= assessing energy performance):
 - No more input data needed from user than monthly method
 - Standard hourly climatic data and use patterns supplied nationally/regionally
 - Model simplified where possible:
 - E.g.: layers inside construction (but: national choice!)
- Model is fully **transparent** and unambiguous:
 - All equations are spelled out
 - All results are traceable
 - − → Can also easily add or expand with innovative technologies
- **Modular** set up of all EPB standards:
 - Each input / output is clear
 - → Can also check interconnectivity with other modules
 Now: time to introduce the spreadsheet

Spreadsheet on each individual EPB standard

- To demonstrate and validate each EPB standard
- Highest priority: technically correct and transparent
 - \rightarrow where possible: all intermediate results are shown
 - At each step of calculation: references are given to the corresponding clause or formula in the standard
 - Clear input & output → shows interconnections with other EPB standards (modules)

Spreadsheet on each individual EPB standard

- To demonstrate and validate each EPB standard
- Highest priority: technically correct and transparent
 - \rightarrow where possible: all intermediate results are shown
 - At each step of calculation: references are given to the corresponding clause or formula in the standard
 - Clear input & output → shows interconnections with other EPB standards (modules)
- (!) spreadsheet ≠ corresponding standard:
 - Spreadsheets have some limitations
 - Not intended for daily practice to assess EPB
 - Lower priority: user friendliness and performance (speed)
 - Some 'practical' limitations on choice of input data
 - Some special features not included (e.g.: multi-zone calculation, attached unconditioned spaces, ..)

Demo spreadheet on EN ISO 52016-1

• Published Nov.2019

Filters					
	Search	Topics	\sim	Group	/
Spreadsheets				1 selected	Select a
Name				Support do	ets
<u>Spreadsheet - The EPB S</u> (options A and B)	tandards Explained	<u>d - Exported ene</u>	<u>rgy - Details</u>	 Published a Presentatio 	

Update in preparation

Sheet with other 'static' input

For instance:

- Area
- Volume
- Thermal capacity
- Temperature setpoints
- Humidity setpoints
- Internal heat gains
- Air flow rates (if not input from ventilation standards)
- Correlation factors for monthly method
- ...

In short: the usual input data

Set points and schedules, currently 3 levels

Heating set point, 3 levels

2	°C	22
1	°C	19
0	°C	15

2: high comfort required

- 1: moderate comfort required
 - 0: low comfort required

Cooling set point, 3 levels

2	°C	26
1		32
0	°C	99

Internal heat gains, 3 levels

Constant internal heat flow rate during all hrs	q int;tot;24x7	W/m ²	1,70
Extra internal heat flow rate during moderate comfort hrs	$q_{ m int;tot;comf1}$	W/m^2	1,60
Extra internal heat flow rate during high comfort hrs	$q_{ m int;tot;comf2}$	W/m ²	2,00

Also latent heat load/needs (moisture)

Just some example Just some example Humidity set points

arphi int;set;HU;ztc ;t	%	25
arphi int;set;DHU;ztc;t	%	60

Assumed moisture production inside thermal zone

			mput_pj, occ next meo.
Moisture production during all hrs	$G_{\rm int;24x7}/A_{\rm use}$	$kg/(m^2.s)$	0,00000392
Extra moisture production during moderately occupied hrs	$G_{\rm int; occ1}/A_{\rm use}$	$kg/(m^2.s)$	0
Extra moisture production during highly occupied hrs	$G_{\rm int; occ2}/A_{\rm use}$	$kg/(m^2.s)$	0

Sheet with use patterns, weekly schedules

	st some examples weekly schedules											
us	some											
- I'	Weekly schedules	Used for inter moistur	rnal heat and		Used for te control and	•		Not ye	t used!		Not y	vet u
	Hour level				Comfort level			Operation 1 level			Oper lev	atio vel
		Occupancy level	Occupancy level		Comfort level	Comfort level		1=not ye Operation level	2d.; 2=on Operation level		1=noty Operation level	se
	Hr of day	Weekday (Mo-Fri)	Weekend (Sat+Sun)		Weekday (Mo-Fri)	Weekend (Sat+Sun)		Weekday (Mo-Fri)	Weekend (Sat+Sun)		Weekday (Mo-Fri)	
	1	2	2	1	0	0	1	0	0	1		0
	3	2	2	3	0	0	3	0	0	3		0
	5	2	2	5 6	0	0	5 6	2	0	5		2
	7	Work	1	7	Work	0	7	Work 2	2	7	Work	2
	9 10	day	Week	9 10	day	Week 2 end 2	9 10	day 2	2	9 10	day	
	11 12	0	end	11 12	2	2	11 12	2	2			2
	13	n	1	13	2	2	13	2	2	1 1		2

R

Sheet with hourly input

Hourly data full year

ek nc	hours/da	Occupancy level	Comfort level	-	ation	Ventilation Vel extra fc. cooling if	Internal heat occupancy		erature points comfort
			from In	the second se		occupied)	level	level	level
		Occupancy	Comfort	Operation (1) level <i>(not yet</i>	Operation (2) level <i>(not yet</i>				
		level	level	used)	used)	$\varphi_{V;zi}/A_{use;zi}$	$\Phi_{ m int;zi/Ause;zi}$	$\vartheta_{setp;H}$	ϑ _{setp;C}
		0, 1 or 2	0, 1, 2	0, 1, 2	0, 1, 2	m3/(h.m2)	W/m2	С	C
6	7	1	0	2	2	0,79	3,3	20	26
6	8	2	2	2	2	0,79	3,7	20	26
6	9	2	2	2	2	0,79	3,7	20	26
6	10	1	2	2	2	0,79	3,3	20	26
6	11	1	2	2	2	0,79	3,3	20	26
6	12	1	2	2	2	0,79	3,3	20	26
6	13	1	2	2	2	0,79	3,3	20	26

Sheet with hourly input

Hourly data full year

USER PROFILE:			
Residential: detached hou	ise	-	10
Source data sheet	RES_Det_house		
lone area	m²	50	
BASE PARAMETER	S	Value	Unit
Hour at day, START		0	hour
Hour at day, END		24	hour
Breaks, inside range		0	hours
Days/week		7	days
hours/day		24	hours
hours/year		8760	hours
Occupants		45,2	m²/pers
Occupants [Total]		2,8	W/m²
Occupants [Dry]		1,9	W/m²
Appliances		2,4	W/m²
Lighting		0	

(being) developed by
Mr Laurent Socal
Profiles based on EN 167981 (is another EPB standard)
plus customized data sets

3 Use Profile Generator (1) Select which profile from database

USER PROFILE:	:						
Residential: detached h	ouse	-	10	(bei	eing) developed by		
Source data sheet	RES_Det_house			•	aurent	•	
lone area	m²	50					
	CO2 production				0,44	g/m²h	
BASE PARAMET	Min T,op in unoc	cupied	hours		16	°C	
Hour at day, END	Max T,op in unoo	cupied		32	°C		
Breaks, inside ran	Min T,op			20	°C		
Days/week hours/day	Max Top			26	°C		
hours/year	Ventilation rate [min]		0,5	l/sm²		
Occupants Occupants [Total]-	Ventilation rate f		0,16	l/sm²			
Occupants [Dry]	Max CO2 concen	tration	[above ou	itdoor]	500	ppm	
Appliances	Min. relative hun	nidity			25	%	
Lighting	Max. relative hur	nidity			60	%	
	Lighting. illumina	nce in v	vorking ar	eas	0	lux	
Use Profile Generator (1) Select which profile from database

Residential: detached house Image: Total sheet sheet Source data sheet RES_Det_house one area m² Min T,op in unoccupied hours 16 (being) developed by Mr Laurent Socal	
Source data sheet RES_Det_house Mr Laurent Socal one area m² 50 BASE PARAMET 0,44 g/m²h Min T on in unoccupied hours 16 °C	
CO2 production 0,44 g/m ² h Min T on in unoccupied hours 16 °C	
BASE PARAMETI Min T on in unoccupied hours 16 °C	
Min T on in unoccupied hours 16 °C	
Hour at day, STAR	
Hour at day, END Max T,op in unoccupied hours 32 °C	
Breaks, inside ran Min T, op 20 °C	
Days/week Max Top 26 °C	
hours/year Ventilation Domestic hot water Calculated av	erage
Occupants Ventilation Occupants [Total] Ventilation Tapping profile selection ERP - XL	
Occupants [Dry] Max CO2 co Appliances Min. relativ Reference data for dhw needs Cold water temperature	15
Lighting Max. relativ Results for dhw Yearly needs	2.84
Lighting. illu Daylight saving time Starts at hour 1995 ei	nds at

Use Profile Generator (2) Generate hourly values

Hourly data full year

	TOTAL DATA										
Occ nu	Appliances gain	ht	Persor gains		Vapou	CO2	nt n for	Tempera	ture set	points	
_						~~					-
р	W	W	W	W	g/h	g/h	°C	°C	°C	°C	
0,88	60	13	112	76	56	18	20	20	26	26	
0,88	60	50	112	76	56	18	20	20	26	26	
0,88	84	50	112	76	56	18	20	20	26	26	
0,88	84	50	112	76	56	18	20	20	26	26	
0,88	96	50	112	76	56	18	20	20	26	26	
0,88	96	50	112	76	56	18	20	20	26	26	
0,88	96	50	112	76	56	18	20	20	26	26	
1,11	72	38	140	95	71	22	20	20	26	26	
1,11	72	38	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	
1,11	60	0	140	95	71	22	20	20	26	26	

Use Profile Generator (2) Generate hourly values

Hourly data full year

	TOTAL DAT	ГА									
Occ	Applianc		Perso		Vapou	CO2	ntin	Tempera	ture set	ooints	
nu	gain	nt	gains	S Is			for				1
p	W	W	W	W	g/h	g/h	°C	°C	°C	°C	
0,8	8 60	13	112	76	56	18	20	20	26	26	
0,8	8 60	50	112	76	56	18	20	20	26	26	
0,8	8 84	50	112	76	56	18	20	20	26	26	
	• •						20	20	26	26	
	Nork i	n pro	ogress	S:			20	20	26	26	
		-					20	20	26	26	
	Combine	e data t	o make	e the d	data fit	as	20	20	26	26	
		 .			• • • • • • • • • • • • • • • • • • •	l	20	20	26	26	
	ourly in	put to	r specit	IC EPE	s standa	ard.	20	20	26	26	
S	uch as f	or shre	adsho	no te			20	20	26	26	
		or spic					20	20	26	26	
	N ISO 52	2016-1	_				20	20	26	26	
Ļ							20	20	26	26	
1,1	1 60	0	140	95	71	22	20	20	26	26	
1,1	1 60	0	140	95	71	22	20	20	26	26	

Use Profile Generator (2) Generate hourly values

Hourly data full year

Г	FOTAL DATA										
Occ nu	Appliances gain		Persons gains		Vapou	CO2	nt n for	Temperat	ture set	points	
						75					·
р	Ŵ	W	W	W	g/h	g/h	°C	°C	°C	°C	
0,88	60	1:	112	76	56	18	20	20	26	26	
0,88	60	50 <mark>-</mark>	112	76	56	18	20	20	26	26	
0,88	84	50	112	76	56	18	20	20	26	26	
							20	20	26	26	
	ork in	prc	ogress	5:			20	20	26	26	

e data Also in preparation

PB sta for spreadsheet on EN ISO 52016-1:

Hourly adaptive temperarure setpoint

(based on EN 16798-1, or customized) For resid.bldngs and offices with operable windows without mech.cooling)

Again: sheet with hourly input

Hourly data full year

Variable properties of windows (e.g. movable solar shading

control or input from other EPB standards

							_					
)	V I	VI	V Z	٧2	\neg			Varia	ble max	. systen	n power	-
				Varia	able ven	tilatior			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
i 1 7	l/R _{c;window} W/m2K	$ au_{ m sol;window}$ -	1/R _{c;window} W/m2K	τ _{sol;window}								
	1,21	0,10	-	0,40	(0	(0	ϑ _{sup}	X	$oldsymbol{\Phi}_{ ext{H;nd;avail}}$	Ф.,	Ф	${oldsymbol{\Phi}}_{ m H;s}$
2	1,21	0,10	1,36	0,40	$\varphi_{V;zi}$	φ _{V;sys;zi}			H;nd;avail			▪ H;s
	1,21	0,10	1,36	0,40	m3/h 0	wv;sys;zi m3/h		/kg dry air	W 4789	w 55,4	kWh 4,789	T H;s
	1,21 1,21 1,21	0,10 0,68 0,68	1,36 1,36 1,36	0,40 0,40 0,40	m3/h 0 0				W 4789 4758 4726	W 55,4 53,8 52,6	kWh 4,789 4,758 4,726	<u>* H;</u>
	1,21 1,21	0,10 0,68	1,36 1,36 1,36 1,36	0,40 0,40 0,40	m3/h 0				W 4789 4758	W 55,4 53,8	kWh 4,789 4,758	• H;s

Hourly data full year

Output file for Excel sheet on ISO 52010-1	Date: 2020-10-05	Sheet with
	17:40:37 -> 17:42:11	hourly climatic
	Demo_ISO_52010-	
	1_Config_V2.0_TMY_Example_calcs_8	data is
Configuration file (workbook):		direct copy of
	Demo_ISO_52010-	
Olimptia input data fila (workhaak/ahaat);	1_Input_TMY_Athens_2020-08-19_18-1	output from
Climatic input data file (workbook/sheet): Station data:	17.XISX/0818	spreadsheet on
Station name:	Athens	
	JRC TMY, selected months, years: 1 = 2 = 2012; 3 = 2013; 4 = 2011; 5 = 2009; 2009; 7 = 2013; 8 = 2011; 9 = 2009; 10	(conversion solar
	2007; 11 = 2012; 12 = 2012; Selected period 2005 2014	measured
Station note(2). Station note(3):	Selected period 2005-2014	
Latitude (degr.):		to any orientation
Longitude (degr.):		and tilt)
Elevation (m):		
Timezone (br) [.]	1× 0	

Sheet with hourly climatic data ust some examples Hourly data full year

					ld	entification	of orientati	ion & tilt ->	ld:	NV	/ NVd	EV	EVd
				a d				, in the					
			Wir		· • · · · ·	1		Sun		100	100	~~	
				Ei	ent.) angle, degrees, Seposition			amma:	180				
	_	-								Sola	ar, total	and di	tfuse,
		Temp.			Moist.						per orie	ont 8. +	ilt
		7 5		Ļ					l				
					Tilt angle, degrees from horiz			n horiz	Beta:	90	90	90	90
			Wind			Air moist.		Solar		90	90	90	90
ay/week	Week	Air temp.	speed		pressure		Solar alt		Grnd refl.	lsol_tot	lsol_dif	lsol_tot	lsol_dif
ajiween		, ar tomp.	specu	vina an.	prosourc	contont		42111	Cind foil.	1301_101	. <u>1301_</u> 011	1301_101	1301_uii
-	-	Degr. C	m/s	Degrees	Pa		_	_	-	W/m2	W/m2	W/m2	W/m2
1	9	16,27	3,61	198	99549	7,965	36,27155	-35,06	0,2	155,2551	155,2551	155,2551	155,2551
1	9	15,94	3,94		99490		28,27438			134,9824			
1	9	15,61	4,26		99431	,	18,47831				92,20507		
1	9	14,68			99408		7,588008			42,94607	42,94607	42,94607	42,94607
1	9	13,74			99384		0				0	0	0
1	9	12,8	3,2	199	99361	8,196	0	-90,7868	0,2	0	0	0	0

Ust some examples Sheet with hourly output Hourly date f "

Time dependent interim output

1.1			•										
y	Int	Internal gains			Incident solar radiation on each construction elemen								
								7					
	<simplified to<br="">only 1 H_ve></simplified>		I _{sol ;eli}	Incident sola	ar radiation, p	per element o	eli, per m2 (V	V/m2)					
	$H_{ m ve}$	$\Phi_{ m int;zi}$	1	2	3	4	5	6	7	8			
П	W/K			W/m2	W/m2	W/m2	W/m2	W/m2	W/m2	W/m2	W/ı		
		W	W/m2	vv/1112									
3	39,86945667	555		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,		
3 4	,		0,00								0, 0,		
3 4 5	39,86945667	555	0,00 0,00	0,00 0,00	0,00	0,00	0,00	0,00	0,00	0,00	0, 0, 0,		
3 4 5 6	39,86945667 39,86945667	555 555	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0, 0, 0, 30,		
3 4 5 5 7	39,86945667 39,86945667 39,86945667	555 555 555	0,00 0,00 0,00 30,14	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0, 0, 0, 30, 76,		
3 4 5 6 7 8	39,86945667 39,86945667 39,86945667 39,86945667	555 555 555 555	0,00 0,00 0,00 30,14 76,53	0,00 0,00 0,00 30,14 76,53	0,00 0,00 0,00 87,89	0,00 0,00 0,00 70,04	0,00 0,00 0,00 30,14	0,00 0,00 0,00 285,92	0,00 0,00 0,00 30,14	0,00 0,00 0,00 30,14	1		
3 4 5 6 7 8 9	39,86945667 39,86945667 39,86945667 39,86945667 39,86945667	555 555 555 555 495	0,00 0,00 0,00 30,14 76,53 168,02	0,00 0,00 0,00 30,14 76,53	0,00 0,00 0,00 87,89 114,32	0,00 0,00 0,00 70,04 276,76	0,00 0,00 0,00 30,14 76,53	0,00 0,00 0,00 285,92 625,47	0,00 0,00 0,00 30,14 76,53	0,00 0,00 0,00 30,14 76,53	76,		

Ust some examples Sheet with hourly output Hourly data f "

Time dependent interim output

	This depende	ni mier nii output						
V	Int	ernal gains	nal gains Incident solar radiation on each construc					
	<simplified th="" to<=""><th></th><th></th><th></th><th></th><th></th><th></th></simplified>							
	only 1 H_ve>	I sol ;eli	Incident solar radiation	on, per element eli, per m2 (W/n	12)			
				7			R	
			Needs	Indoor te	emperature			
	$H_{\rm ve}$	$arPhi_{ m int;zi}$			\checkmark			
	W/K	W					W/I	
В	39,86945667	555					0,	
1	39,86945667	555	$oldsymbol{\Phi}_{ ext{HC;nd}}$	$\vartheta_{\mathrm{int;op}}$	$\vartheta_{\mathrm{int;a}}$	$\vartheta_{ m int;rm}$	0,	
6	39,86945667 39,86945667	555 -	W	С	С	С	30,	
7	39,86945667	495	-1012,15	26,00	25,95	26,05	76,	
B	39,86945667	495 1					106	
2	39 86945667	, 495 ,3	-1415,35	26,00	25,92	26,08	127	
			-2043,02	26,00	25,87	26,13	34	
			-2995,82	26,00	25,79	26,21		
			-1895,59	26,00	25,83	26,17		
			-1980 10	26.00	25.83	26.17		

Ust some examples Sheet with hourly output Hourly date f

Just some examples heet with monthly output Summary and statistics per maxid

							,					
He	eating lo	oad dist	tributio	n	Num	ber of l		nonth w eding s	•	rative to imit	empera	ture
s > fraction >	Vofmayna				Base	Number of	hno with 9	helowy	7			Bas
s > fraction 7	x of max po	Jwei			Dase	Number of	115 with $v_{\rm il}$	nt;op DelOW.				Das
										-		
0,8	0,6	0,4	0,2	0	20	18	16	14	12	10	8	20
-3756	-2817	-1878	-939	0	$artheta_{ ext{int;op}}$							$\vartheta_{\rm int;c}$
0,00	0,00	0,00	0,00	0,92	0	0	0	0	0	0	0	
0,00	0,00	0,00	0,00		0	0	0	0	0	0	0	
0,00	0,00				0	0	0	0	0	0	0	
0,00	0,00			-	0	0	0	0	0	0	0	
0.00	0.00	0.02	0.07	1.00	0	0	0	0	0	0	0	

Monthly method Monthly calculation & output Interview Stample: Sheet for heating

H.ne i <mark>f no int</mark> e		Solar	and sky	rad.	Gains				Intermittency correction				
contin.H	Time const		Skyrad	incl minas sky rad	Losses		Balanc ratio			·		Nights	
6.6.4.4		6.6.8	6.6.8	6.6.8	6.6.7	6.6.4.4	6.6.10.2	6.6.11.3	6.6.11.3	6.6.11.3	6.6.11.3	6.6	
										$dartheta_{ m H;red;mn;y}$			
$Q_{ m H;ht;cont}$	$ au_{ m H}$	$Q_{ m H;sol}$	Qr	$Q_{ m H;sol}$	$Q_{ m H;int}$	$Q_{ m H;gn}$	$\gamma_{\rm H;gn;cont}$	$dartheta_{ ext{float}}$	$\Delta t_{ m H;red;y}/ au_{ m H}$	without lower limit	10	$\Delta t_{ m H;red}$	
kWh	h	kWh		kWh	kWh	kWh		-	-	-	-		
685	89,2	1100,8	51,6	1049,2	353,7	1402,9	2,05	1,00	0,08	1,00	1,00	1	
793	89,2	1083,7	51,6	1032,1	353,7	1385,8	1,75	1,00	0,08	1,00	1,00		
810	89,2		46,6	898,6	319,4	1218,0	1,50	1,00	0,08	1,00	1,00		
581	89,2		51,6	1390,6		1744,2		1,00	0,08				
515	89,2			1320,4	342,3		3,23	1,00	0,08				
73	89,2			1354,7	353,7			1,00	0,08				
-266	89,2			1372,8	342,3			1,00	0,08				
-481	89,2	1490,2	51,6	1438,7	353,7	1792,3	-3,73	1,00	0,08	1,00	0,00		

Ust some examples from earlier presented

Examples of hourly data

Conclusion on EN ISO 52016-1:

One of the core EPB standards for calculating the overall EPB

- Illustrated that
 - The hourly calculation method is pure physics & dynamic
 - ➔ comparable to building simulation tools
 - But **tailored** to the needs:
 - No more input for user than monthly method
 - Fully traceable
 - Fit for various climates and use patterns: residential and non-residential
- Also illustrated:
 - Spreadsheet features and further developments for demonstration and testing: transparent, also in interconnection between standards (modules)
- Note: monthly method is also an option in EN ISO 52016-1, but requires extra care

EPB Center is also available for specific services requested by individual or clusters of stakeholders

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

Parts of this document have been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185). **Disclaimer:** The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Thank you!

Your service center for information and technical support on the new set of EPB standards

Integrated application of the EPB standards on energy needs, ventilation and air heating and cooling; demonstration

Gerhard Zweifel

30

gerhard.zweifel@hslu.ch

This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185 Start: 21 September 2018 for 3 years BUILD UP Webinar series Webinar 8: *Calculations with the set of EPB standards (II) - Energy needs combined with specific systems* 20 October 2020

- Professor emeritus, Lucerne University of Applied Sciences and Arts (HSLU) (≤ 2019)
- EPB Center expert (> 2017)
- Involved in initiation, preparation and coordination of set of EPB standards (2012-2017)
- Convenor of CEN Working Group responsible for system related EPB standards:

Ventilation/cooling CEN/TC 156/WG 21

• Member of ISO Joint Working Group on the overall set of EN ISO EPB standards, in collaboration with CEN, and some related working groups ISO/TC 163 & ISO/TC 205, CEN/TC 371, ISO/TC 163/SC 2/WG 15/16

Involved standards and spreadsheets

- EN ISO 52016-1: Energy performance of buildings Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads Part 1: Calculation procedures
 - Demo_XLS_on_ISO_52016-1_2019-11-20b.zip on https://epb.center/documents/demo-en-iso-52016-1/
 - Updated for case study
- EN 16798-7: Energy performance of buildings Ventilation for buildings Part 7: Calculation methods for the determination of air flow rates in buildings including infiltration (Modules M5-5)
 - Demo_FprEN_16798-7_2016-02-11.xlsm on <u>https://epb.center/documents/demo-fpren-16798-7/</u>
 - Updated for case study
- EN 16798-5-1: Energy performance of buildings Modules M5-6, M5-8, M6-5, M6-8, M7-5, M7-8 Ventilation for buildings — Calculation methods for energy requirements of ventilation and air conditioning systems — Part 5-1: Distribution and generation — method 1
 - Demo_EN_16798-5-1_2019-09-20f.xlsm on https://epb.center/documents/demo-en-16798-5-1/
 - Updated for case study

Why coupling of EN ISO 52016-1, EN 16798-7 and EN 16798-5-1 spreadsheets?

- EN ISO 52016-1:
 - Calculation of required heating/cooling energy needs
 - Calculation of room temperatures based on really supplied/extracted heating/cooling energy
- EN 16798-7:
 - Calculation of required air flow rates and/or supply air temperatures for mechanical ventilation
 - Based on EN ISO 52016-1 required heating/cooling energy need
 - > Transformation of energy needs in flow rates/supply temperatures
- EN 16798-5-1:
 - Calculation of air flow rates and/or air temperatures really supplied for mechanical ventilation
 - Based on required air flow rates and/or supply air temperatures from EN 16798-7
- > Effects of limited capacities and/or operational deviations from actual needs!

- Effects of mechanical ventilation «emission», i.e.
- the determination of
 - required air flow rates
 - required supply air temperatures
- to
 - fulfill the indoor air requirements (based on EN 16798-1)
 - cover the energy needs for heating/cooling in cases
 when to be covered by ventilation/air conditioning system

Technically:

- Air terminal devices
 - VAV boxes
- nothing
 - just transformation of calculated values

EN 16798-5-1 Contents

- Air flow rate control types
- Supply air temperature control types
- Heat recovery:
 - Types:
 - flat plate
 - Rotary
 - Pumped circuit Connection to product standards (EN 308, 13053)
 - Humidity recovery
 - Control
 - Frost protection
 - Auxiliary energy
- Recirculation control
- Fan control
 - Single zone / multi zone systems
 - Big impact on fan energy
 - Link to product standards
- Ground preheating / -cooling
- Humidification / dehumidification
- Adiabatic cooling

EN 16798-5-1 Spreadsheet

EN 16798-5-1 Spreadsheet

Very comprehensive spreadsheet

- > 150 equations
- Vast number of options
- Vast number of combinations
- Characterisation of components
- -> need for a user friendly interface, as seen on next slide

EN 16798-5-1 Spreadsheet

EN ISO 52016-1

EN ISO 52016-1

- Outdoor temperature
- (Outdoor humidity)
- Indoor air temperature
- Required energy need (heating/cooling)

EN 16798-5-1

EN ISO 52016-1

- Outdoor temperature
- (Outdoor humidity)
- Indoor air temperature
- Required energy need (heating/cooling)

- System operation signal
- required volume flow rate
- Required supply temperature

Example calculations

- Climate: Strasbourg
 - Two periods
 Summer: 3 weeks August (last week analysed)
 Winter: 3 weeks January/February (last week analysed)
- «Building»: 150 m² landscape office, single space
- Ventilation system: 2 cases
 - 1. Variable volume (VAV) system
 - Volume flow rate controlled according to energy needs
 - Supply temperature pre-defined (outdoor-dependent curve)
 - 2. 2 stage ventilation system
 - Volume flow rate pre-defined (controlled according to outdoor air requirements)
 - Supply temperature controlled according to energy needs
- note: load based control of both is «bad control» (unless clearly sequential)
 - Not possible in EN 16798-5-1 standard/spreadsheet

22

-> higher on cooler days due to higher supply temperature

> 6168 6192 6288 6144 6240 6264 6216 6170 Hours -Supply volume flow rate —Required supply flow rate —required cooling coil output -Supply air temperature ----Return (=room) air temp. ----External temperature ----Required cooling power Delivered cooling power

24

0.0

-4.0

Conclusion and outlook

- Why spreadsheets?
 - Fully transparent step-by-step validation and demonstration
- Coupling shows the correct function of the chain EN ISO 52016-1 – EN 16798-7 – En 1679851, for ventilation-based space conditioning
- Different operational design and control options
 - Pre-set supply air temperature with load-controlled volume flow rate
 - Pre-set volume flow rates with load-controlled supply air temperature
- Further aspects not analysed in results shown, but partly included
 - E.g. dehumidification

EPB Center is also 'available' for specific services requested by individual or clusters of stakeholders

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

Parts of this document have been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185). **Disclaimer:** The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Thank you!

Your service center for information and technical support on the new set of EPB standards

From component to overall energy performance – the modular approach

Laurent Socal

socal@iol.it

This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185

Start: 21 September 2018 for 3 years

BUILD UP Webinar series Webinar 10: Example calculations with the set of EPB standards Focus on non-residential buildings 2nd of February 2021

My background

- Various professional experience as installer, designer, commissioning, software analysis, standardisation and training activity related to the HVAC sector. Also working in the industrial sector (pharma) on environmental (IPPC) and energy issues (energy audits, energy management systems)
- Convenor of the Italian mirror group on heating systems
- Task leader for the development of several EN standards,
 - EN 15378-3 on measured energy performance
 - EN 15378-1 on the inspection of heating system
 - EN 15316-4-8 on local and radiant heaters
 - EN 14336 installation and commissioning of heating systems
- Active member of CEN/TC 228 WG4 and WG1
- Involved in the preparation and coordination of the set of EPB standards under Mandate 480 (2012-2017)
- EPB center expert (> 2017)

How to balance ?

The availability of large amounts of cheap energy is the foundation of our life quality...

... but the consequences of energy use is a concern.

We want all sorts of comfort services in an NZEB ...

... but we want to use as little as possible resources.

We want to prove that new designed buildings will require few resources for a standard use and also to display this for any existing building, maybe before and after renovation ...

... so we need to calculate the "energy performance" of all sorts of buildings and systems for all EU climates ...

... but we want to keep it as simple as possible

So we would like...

A calculation method that is:

- Functional: it works with all types of buildings and systems
- Sensitive: it reacts to all the available options and encompasses both new and old technologies to support a correct renovation evaluation
- Usable: it has clear data input, it is adaptable to context, and it provides suitable results for its scope, compliance with requirements and energy performance display

... that is: comprehensive, traceable, realistic, adaptable ...

... but also **simple, short**, **compact**, **easy to read** and **software proof**, ...

Modularity

Modularity allows to combine simple items to build or describe a complex system. Here is an example from Webinar 7:

The result... presented at webinar 1, Feb 4, 2020 HAT GAINS BUILDING FABRIC CLIMATIC CONDITIONS INDOOR ENVIRONMENT REQUIREMENTS

Which modularity ?

Modularity is a real advantage when «modules» have similar properties and internal organization so that:

- If you know one, you (nearly) know all of them
- You can easily replace one with another one for e.g.
 - another type of generator
 - a default / special module (EN / national)

CEN-TS 16629 «detailed technical rules» specifies the common properties of all modules

Common properties of «EN EPB modules»

- Organisation of the contents of the standard and of the related TR
- Annex A / annex B mechanism
- Structuring of the input data
 - Product data (local)
 - product description (qualitative, standardized selection properties);
 - product technical data (quantitative, standardized technical properties);
 - System design data (application case properties, local);
 - process design data;
 - control type;
 - Operating conditions (connection with structure)
 - Constants and other data
- Structure of the accompanying Excel \rightarrow connection

Structure of each module

- MODULAR STRUCTURE General part + modules
- Calculation modules 1 XLS per module
- Each calculation module requires
 - Interconnection values (i/o to the structure operating conditions)
 - Product data (local data)
 - Other local data about specific application (like localisation, indoor/ outdoor installation info)

- Thanks to the modular structure you may even connect a non EN standard
- ... but the I/O structure has to be respected

 Needed info can be found both in the accompanying XLS and in the specific I/O clauses in the EN standard

Facilitating input

Product data				
Product description data				
Condensing boiler	BLR_COND	BLR_COND		BLR_COND_NO
Fuel	BLR_FUEL	BLR_FUEL		BLR_FUEL_OIL
Product technical data				
generator output at full load;	Ø _{Pn}	Phi_Pn	kW	60
generator efficiency at full load;	$\eta_{ m gnr;Pn}$	eta_gnr_Pn	%	92,0
generator output at intermediate load;	ϕ_{Pint}	Phi_Pint	kW	18
generator efficiency at intermediate load;	$\eta_{\rm gnr;Pint}$	eta_gnr_Pint	%	90,0
stand-by heat loss at test temperature difference $\Delta \boldsymbol{\theta}_{i,\text{test}}$;	$oldsymbol{\Phi}_{gnr;ls;P0}$	Phi_gnr_ls_P0	kW	0,72
power consumption of auxiliary devices at full load;	P _{aux;gnr;Pn}	P_aux_gnr_Pn	kW	0,32
power consumption of auxiliary devices at intermediate load;	P _{aux;gnr;Pint}	P_aux_gnr_Pint	kW	0,06
stand-by power consumption of auxiliary devices;	P _{aux;gnr;P0}	P_aux_gnr_P0	kW	0,015
auxiliary power when the generation system is inactive	P _{aux;off}	P_aux_off	kW	0
minimum operating boiler temperature.	Ձ gnr;min	theta_gnr_min	°C	50
Recoverable fraction of stand-by losses	f _{gnr;env}	f_gnr_env	-	0,5
correction factor of full-load efficiency;	f _{corr;Pn}	f_corr_Pn	-	0,04
correction factor of intermediate load efficiency;	f _{corr;Pint}	f_corr_Pint	-	0,05
generator average water temperature at test conditions for full load;	$oldsymbol{\vartheta}_{gnr;test;Pn}$	theta_gnr_test_Pn	°C	70
generator average water temperature at test conditions for intermediate load;	$oldsymbol{artheta}_{gnr;test;Pint}$	theta_gnr_test_Pint	°C	50
difference between mean boiler temperature and test room temperature in test conditions;	$\Delta \boldsymbol{\vartheta}_{\mathrm{test;P0}}$	deltatheta_test_P0	°C	50
part of the auxiliary energy recovered	f _{rvd;aux}	f_rvd_aux	-	0,75
part of the nominal electrical power not transmitted to the distribution sub-system	f _{rbl;aux}	f_rbl_aux	-	0,25

Aggregation of data

0,7

BLR_COND_NO

It's not only energy

- In the past:
 - − needs \rightarrow systems \rightarrow delivered energy
 - the «connection» was only energy \rightarrow simple streamline
- Now
 - The connection is also operating temperature
 - There might be several generators (priorities)
 - There are interactions between building and systems (heat losses)
 - There are connections between systems for various services (heat recovery from chiller to provide domestic hot water)

You have just seen the interaction between energy needs and ventilation systems, with only a few possible control options

The real challenge...

It's relatively simple to deal with each module...

... the real challenge is having them work together smoothly.

The real challenge...

It's relatively simple to deal with each module...

... the real challenge is having them work together smoothly.

But don't be afraid...

There is a front-end and a back-end

- Front-end: is seen by those who actually do the calculation and use the method. Their concern:
 - Describing the configuration of the building and systems
 - Inputting the data about all building elements and system components
 - Describing the operation of the building and systems
 - Understanding the calculation and the indicators
- **Back-end:** for those who design the method. Their concerns:
 - Structuring the modules and their input and output so that it is easy to combine them and link them to catalogues and data-bases
 - Defining a calculation structure that is software proof and easy to adapt to actual building and system configuration

Modern buildings and systems are more and more various and complex and interactions between building envelope and technical systems are more and more relevant and both ways

- A clear modular structure allows to adapt the calculation to the actual case
- It's a real challenge to define a general structure to connect all modules in a smooth way: concern for standard developers
- The structure issue is not seen by the end user: the flexible structure allows him to describe a large variety of situations.

EPB Center is also 'available' for specific services requested by individual or clusters of stakeholders

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

Parts of this document have been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185).

Disclaimer: The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Thank you!

Submit your question!

