# Welcome to **BUILD UP**

The European Portal for Energy Efficiency in Buildings







#### Join Europe's largest international portal to discuss, contribute and collaborate with other experts in this field.

An opportunity to grow your network, boost your visibility, influence markets and stakeholders, exchange your expertise and promote best practices.

#### BUILD UP The European Portal For Energy Efficiency In Buildings $\langle 0 \rangle$



#### View all

#### Check our Learn section!





#### Webinar 6 – Sept. 8 2020 – Heating systems in the EPB standards

## Webinar 7, Tuesday Oct. 6, Example calculations with the set of EPB standards – (1) Introduction and overarching calculation procedures

Webinar 8, Tuesday Oct. 20, Example calculations with the set of EPB standards – (2) Energy needs combined with specific systems

Webinar 9, Tuesday Jan. 19, Example calculations with the set of EPB standards – (3) Whole building calculations, from components to overall primary energy

Webinar 10, Tuesday Feb. 2, Example calculations with the set of EPB standards – (4) Energy needs combined with specific systems





### WEBINAR

Example calculations with the set of EPB standards (III)

Whole building calculations, from components to overall primary energy

19th January | 12:00 H

BUILD UP The European Portal For Energy Efficiency In Buildings







Your service center for information and technical support on the new set of EPB standards

## Energy Performance of Buildings standards (EN/ISO) supporting the implementation of the EPBD

Jaap Hogeling

Manager international standards at ISSO

Chair CEN/TC 371 Energy Performance of Buildings

Member ISO/TC 163/WG 4: Joint Working Group (JWG) between ISO/TC 163 and ISO/TC 205:

Energy performance of buildings using holistic approach

j.hogeling@isso.nl

The EPB Center is supported by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185 Start 21 September 2018 for 3 years www.epb.center BUILD UP Webinar series Webinar 9: Calculations with the set of EPB standards (III) – Whole building calculations, from components to overall primary energy 20/01/2021







- CEN/TC 371: Energy Performance of Buildings, chairperson since 2004
  - Project leader of the EU Mandate/480 to CEN regarding the development of the set of EPB standards.



- Participation in 5 CEN/TC's and 2 ISO/TC's related to Energy Performance of Buildings
- Manager international standards at ISSO, Rotterdam, the Netherlands
- Initiator of EPB Center (an initiative of ISSO and REHVA)
- Fellow of ASHRAE and REHVA



# The goal of example calculations is to demonstrate:

- the functionality : to demonstrate that the calculation works with practical cases and available features to describe energy performance of buildings and HVAC installations
- the sensitivity of the calculation procedure: demonstrate which impact of single data or group of data on selected calculation results have
- the usability: demonstrate the data input (avoiding unnecessary input complexity), description of practical system configurations, show useful results.

# of individual calculation modules and of the whole building calculation procedure.



# In this 9th webinar we will focus on EP calculation for a residential building case

- It will be demonstrated how the EPB standards enable to identify the impact of building and system design (insulated / non-insulated, system technology choice, renewables inclusion), outdoor climate (cold to hot) and assumed use patterns (such as occupancy and comfort schedules on the overall energy performance.
- We will also demonstrate how (national) choices for partial and overall EPB numerical indicators can effectively control the energy performance and set reliable minimum energy performance requirements.



- The EP calculation standards are great tools.
- If using hourly calculation methods correctly, you can extract a lot of useful information to decide on the best building and system design by comparing different possible solutions.
- When properly **build**, **installed** and correctly **commissioned**, **used** and **operated**, this is the best starting point for a well performing energy efficient and possibly zero-carbon building.



#### Thank you!



More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

This document has been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185).

**Disclaimer:** The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.



Your service center for information and technical support on the new set of EPB standards

Building envelope: starting point of nearly zero-energy building (NZEB): heating and cooling needs and partial performance indicators

## Dick van Dijk



dick.vandijk@epb.center

This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185 Start: 21 September 2018 for 3 years BUILD UP Webinar series Webinar 9: Example calculations with the set of EPB standards – (3) Whole building calculations, from components to overall primary energy 19<sup>th</sup> January 2021





- EPB Center expert (> 2017)
- Involved in initiation, preparation and coordination of set of EPB standards (2012-2017)
- Co-convenor of ISO Joint Working Group on the overall set of EN ISO EPB standards, in collaboration with CEN ISO/TC 163 & ISO/TC 205, CEN/TC 371
- Convenor of ISO Working Group responsible for few key EPB standards:

Energy needs heating/cooling, Climatic data, Partial EP indicators (ISO/TC 163/SC 2/WG 15)



# Starting point of nearly zero-energy building (NZEB): Energy needs

- EPB standard EN ISO 52016-1: *heating and cooling needs and indoor temperatures*
- "Already presented at previous webinars?!!"
- Correct! But focus today:
  - Illustration of impact of some national technical choices (standard conditions of use, simplifications)
  - Illustration of impact of some design choices and how to value the result in terms of energy and comfort
  - → Partial performance indicators
     National policy choices; "post-processing EPB standard"
     EN ISO 52018-1
  - More general: show that EN ISO 52016-1 is fit for the purpose



See webinar 1

| National | choices, | each EPB | standard |
|----------|----------|----------|----------|
|----------|----------|----------|----------|

| Annex A (normative)                      | Annex B (informative)                   |
|------------------------------------------|-----------------------------------------|
| <ul> <li>Empty framework</li> </ul>      | <ul> <li>Framework filled in</li> </ul> |
| <ul> <li>Template for</li> </ul>         | <ul> <li>Voluntary</li> </ul>           |
| -choices                                 | <ul> <li>default choices</li> </ul>     |
| –input data                              | <ul> <li>default input data</li> </ul>  |
| -references                              | <ul> <li>default references</li> </ul>  |
| <ul> <li>Lay-out is mandatory</li> </ul> | <ul> <li>Use is optional</li> </ul>     |



# (Other) background information

- For instance:
  - <u>Webinar 2</u> (March 19): EPB standards overview
  - <u>Webinar 4</u> (May 26): Hourly versus monthly methods
  - <u>Webinar 7</u> (Oct. 6): Introduction to the example calculations
  - <u>Webinar 8</u> (Oct.20): Coupling of thermal zone and heat pump system calculations
  - <u>Overview</u> of full series: <u>https://epb.center/support/webinars</u>



## Set of EPB standards: modular approach



# "Post-processing": Partial performance indicators





# Tools for the example calculations

- Spreadsheets for individual standards ("modules")
- Why?



# Spreadsheet tools

(publicly available or in preparation)

- To demonstrate and validate each EPB standard
- (!) spreadsheet ≠ corresponding standard:
  - Spreadsheets have some limitations
    - Some 'practical' limitations on input data
    - Some special features not included (e.g.: multi-zone calculation, attached unconditioned spaces, ..)
  - Spreadsheets:
    - Highest priority: technically correct and transparent
      - → where possible: all intermediate results are shown
      - At each step of calc.: references given to the corresponding clause or formula in the standard
    - Lower priority: user friendliness and performance (speed)
    - Not intended for daily practice to assess EPB



### Single family house

Ν

- 150 m<sup>2</sup> floor area
- ISO/TR 52016-2 example



Room 2

N

Room 1



# Variations

Configurations explored:

- Oslo / Athens
- Hourly calculation method
- Insulated / Uninsulated
- Continuous / Intermittent heating
- (Assumed) operation of movable solar shading
- Minor(?) simplifications
- Absence of system...
- Heat pump / Boiler

#### **Green:**

National choices (calculation method, conditions)

**Red:** Building and/or system design



# **Remember:**

#### EN ISO 52016-1: parallel

#### hourly and monthly calculation methods

#### Hourly calculation of

- energy needs for heating and cooling
- both sensible and laten heat
- indoor temperatures
- beating and cooling load



Same input data and boundary conditions

#### Extra output:

- Monthly characteristics
- Can be used as basis for generating or validating correlation factors for monthly method Interested in hourly

versus monthly

Pacerding of webinar 4

calculations?

#### Monthly calculation of energy needs for heating and cooling

- using national correlation factors to take into account dynamic effects
  - E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ...



# Hourly climatic data

- So called **Test Reference Years** for given region or country (based on EN ISO 15927-4)
- If not available:
  - EC Joint Research Centre (JRC) tool:
     "Typical Meteorological Year (TMY) generator": hourly weather data for any location and period of choice
  - New: EPB Center tool to convert JRC TMY datafile suitable as input for the set of EPB standards (via EN ISO 52010-1) Now available!

https://epb.center/documents/tmy-iso-52010-





#### **Athens**

|                       | Uninsulated |         | Insulated |         |
|-----------------------|-------------|---------|-----------|---------|
| Energy needs<br>(kWh) | Heating     | Cooling | Heating   | Cooling |
| Continuous            | 10207       | 3670    | 470       | 4534    |
| Intermittent          | 9317        | 3670    | 441       | 4534    |
| %                     | -9%         |         | -6 %      |         |

#### **Observations:**

- National technical choice: assume continuous or intermittent?
- From heating dominated to cooling dominated
- Heating nowadays small (but comfort if no heating available?: later slides) 14



# Disclaimer

- All results are subject to review
- The final results will be published at the EPB Center website later this year





#### Oslo

|                       | Uninsulated |         | Insulated |         |
|-----------------------|-------------|---------|-----------|---------|
| Energy needs<br>(kWh) | Heating     | Cooling | Heating   | Cooling |
| Continuous            | 46103       | 3       | 7992      | 751     |
| Intermittent          | 43101       | 2       | 7813      | 749     |
| %                     | -7 %        |         | -2 %      |         |

#### **Observations:**

- National technical choice: assume continuous or intermittent?
- Cooling still small (but comfort if no cooling available?: later slides)





### Athens: Sensitivity of assumed use of solar shading devices

|                                                | Insulated |         |  |
|------------------------------------------------|-----------|---------|--|
| Energy needs (kWh)                             | Heating   | Cooling |  |
| Down at solar irrad.<br>> 200 W/m² (default)   | 470       | 4534    |  |
| Down at solar irrad.<br>> 400 W/m <sup>2</sup> | 249       | 6272    |  |
| %                                              | -47 %     | +38 %   |  |

#### servations:

- The choice of incident solar radiation level for solar shading use has strong impact on result
- → National technical choice: which assumed standard user behaviour 17 is realistic?





# **Athens:** Sensitivity of colour of external opaque surfaces

|                            | Insulated |         |  |
|----------------------------|-----------|---------|--|
| Energy needs (kWh)         | Heating   | Cooling |  |
| Abs factor=0,8 (default)   | 470       | 4534    |  |
| Abs factor=0,2 (variation) | 617       | 3811    |  |
| %                          | +30 %     | -16 %   |  |

#### **Observations:**

- Taking into account the color (solar absorptance) of the external surface has impact on result
- **>** National technical choice: default value (which?) or actual value





### Athens: What if no heating system present?

|                      |         | Insulated |                               |
|----------------------|---------|-----------|-------------------------------|
| Energy needs (kWh)   | Heating | Cooling   | Mean indoor<br>temp. February |
| Continuous           | 470     | 4534      | 20 °C                         |
| No heating system    | 0       | 4533      | 17,6 °C                       |
| % of heating+cooling | -9 %    |           |                               |

#### **Observations:**

- If no heating system present: 9 % less energy use.
- National policy choice: for level playing field, if no system present:
   assume a (default) system or add a separate thermal comfort indicator
   19



# Different ways to indicate discomfort

- Previous slide: average temp. In Feb below threshold
- Other way, e.g.: temperature weighted hours with indoor temperature below 20 Celsius ("accumulated temperature difference")







### **Oslo:** What if no cooling system present?

|                      |         | Insulated |                                    |
|----------------------|---------|-----------|------------------------------------|
| Energy needs (kWh)   | Heating | Cooling   | Mean indoor<br>temp. July          |
| Continuous           | 7992    | 751       | 25,9 °C                            |
| No cooling system    | 7976    | 0         | 28,9 °C <sup>*)</sup>              |
| % of heating+cooling |         | -9 %      | <sup>*):</sup> 2,9 K above<br>26°C |

#### **Observations:**

- If no cooling system present: 9 % less energy use.
- National policy choice: for level playing field, if no system present:
   assume a (default) system or add a separate thermal comfort indicator 21



# Different ways to indicate discomfort

- Previous slide: average temp. in July above threshold
- Other way, e.g.: temperature weighted hours with indoor temperature above 26 Celsius ("accumulated temperature difference")





# Heat pump system

- Energy needs for heating and cooling coupled to heat pump system
- Why?
  - Thermal capacity of heat pump depends on the (variable) conditions
  - If capacity is not enough to cover the needs: undersized system
    - → thermal discomfort (can be indicated in same way as shown for absence of systems)
  - Thermal losses of system are variable and, if dissipated in the thermal zone: contribute to internal heat gains



Shown and applied **at previous webinar**: hourly interaction of two spreadsheets (modules)



\*): incl. auxiliary energy and backup (if present)



# Today: simplified

- Hourly interaction aims to show sensitivity for variable hourly properties and conditions
- → can be simplified:






#### Oslo: small (4 kW) heat pump

|                    |         | Insulated |                           |
|--------------------|---------|-----------|---------------------------|
| Energy needs (kWh) | Heating |           | Mean indoor<br>temp. Feb. |
| Continuous, boiler | 7992    |           | 20,0 °C                   |
| Continuous, HP     | 7978    |           | 19,9 °C                   |
|                    | -0,2 %  |           |                           |

#### **Observations:**

- Slightly undersized heat pump: (negligible) less energy use.
- National policy choice: for level playing field, if undersized system: assume a (default) system size?? or add a separate thermal comfort indicator



### Example

#### • Oslo, small (4 kW) heat pump



National policy choice (template/examples in EN ISO 52018): National FPB requirement: maximum allowed value? In this case: negligible (thanks to assumed continuous heating)



## Conclusion

- EN ISO 52016-1: One of the core EPB standards for calculating the overall EPB
- Focus today:
  - Illustration of impact of some national technical choices (standard conditions of use, simplifications)
  - Illustration of impact of some design choices
    and how to value the result in terms of energy and comfort,
    using partial performance indicators (EN ISO 52018-1)
- Hopefully contributed in showing that EN ISO 52016-1 is fit for the purpose: in terms of functionality, sensitivity & usability



*EPB Center is also available for specific services requested by individual or clusters of stakeholders* 

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

Parts of this document have been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185). **Disclaimer:** The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

### Thank you!





Your service center for information and technical support on the new set of EPB standards

#### Technical systems: influence of design and operation mode on dedicated indicators and overall building performance

#### Laurent Socal

socal@iol.it



This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185

Start: 21 September 2018 for 3 years

BUILD UP Webinar series Webinar 9: Calculations with the set of EPB standards (III) – Whole building calculations, from components to overall primary energy 19<sup>th</sup> of January 2021



# My background

- Various professional experience as installer, designer, commissioning, software analysis, standardisation and training activity related to the HVAC sector. Also working in the industrial sector (pharma) on environmental (IPPC) and energy issues (energy audits, energy management systems)
- Convenor of the Italian mirror group on heating systems
- Task leader for the development of several EN standards,
  - EN 15378-3 on measured energy performance
  - EN 15378-1 on the inspection of heating system
  - EN 15316-4-8 on local and radiant heaters
  - EN 14336 installation and commissioning of heating systems
- Active member of CEN/TC 228 WG4 and WG1
- Involved in the preparation and coordination of the set of EPB standards under Mandate 480 (2012-2017)
- EPB center expert (> 2017)



# The building

#### Single family house

**Oslo / Athens** Insulated / non insulated 150 m<sup>2</sup> floor area Floor heating / radiators **Boiler or heat pump** Dhw store 160 l No PV or thermal solar Natural ventilation



n = 0,3 h<sup>-1</sup> insulated or 0,4 h<sup>-1</sup> non insulated

Heating needs already explained before







Generated via TMY and EN ISO 52010 Two extremes considered: Oslo and Athens



# Systems calculation

- Challenges for the calculation procedure
  - Take into account the interaction between systems and building envelope: limited power available for heating, during recovery after intermittency or when dhw storage reload is required, losses of the installation, ...
  - Avoid iterative calculation that use a lot of time
  - Take into account operating conditions
- Solutions
  - Optimized calculation order
  - Modules that take into account operating conditions

More details on specific calculation procedures of EN standards about heating and domestic hot water systems can be found on Webinar 6



# Whole building calculation





## Dhw needs – EN 15378-3

- Calculate daily needs: volume at  $\theta_{draw}$
- Apply a daily profile: XL (same whole week)
- Take into account θ<sub>cold</sub> 17,8 °C / 6,1 °C
- Get the energy need





Dhw needs 212 l/day @42 °C 77 m<sup>3</sup>/year 2.162 / 3.207 kWh/year 5,9 / 8,8 kWh/day 14,4 / 21,4 kWh/m<sup>2</sup>year 246 / 366 W average Athens / Oslo



# Storage - EN 15316-5

- Uses 2 layers model (no thermal solar in the example)
- Concentrates the time of the heat request in the morning and evening.
- Storage losses: about 10 to 15 %, similar absolute value if installed indoor





# Storage EN 15316-5



- Sample result from the spreadhseet for EN 15316-5
- The temperature of two layers is seen at the end of the hour
- Heating (reload) starts at 45°C.
- Possible application: use the spreadsheet with



### Storage model

| Evolution of temperatures in the storage during the time step |     |         |                 |                   |                  |                   |                  |                |
|---------------------------------------------------------------|-----|---------|-----------------|-------------------|------------------|-------------------|------------------|----------------|
| Step                                                          |     | 1       | 23              | 4                 | 5                | 6                 | 7                | 8              |
| Description                                                   |     | Initial | DHW<br>draw-off | Heating<br>output | Solar<br>heating | Back-up<br>heater | Layer<br>melting | Heat<br>losses |
| Layer 4                                                       | °C  | 46,88   | 46,88           | 46,88             | 46,88            | 46,88             | 50,00            | 49,67          |
| Layer 3                                                       | °C  | 46,88   | 14,29           | 14,29             | 14,29            | 53,12             | 50,00            | 49,67          |
| Layer 2                                                       | °C  | 7,54    | 6,10            | 6,10              | 6,10             | 6,10              | 6,10             | 6,25           |
| Layer 1                                                       | °C  | 7,54    | 6,10            | 6,10              | 6,10             | 6,10              | 6,10             | 6,25           |
|                                                               |     |         |                 |                   |                  |                   |                  |                |
| Volume withdrawn                                              | I   |         | 62,78           |                   |                  |                   |                  |                |
| Energy withdrawn                                              | kWh |         | 2,970           | 0,000             |                  |                   |                  | 0,059          |
| Energy supplied                                               | kWh |         |                 |                   | 0,000            | 3,531             |                  |                |
| Lifergy supplied                                              |     |         |                 |                   | 0,000            | 3,331             |                  |                |



Example of a calculation interval when reload of the store is triggered

# Only this part of the model has been used



# Heat pump: EN 15316-4-2



The performance of the heat pump is strongly dependent on operating conditions At low external temperatures, full load capacity and COP of AW heat pumps are reduced. High flow temperature further reduces the COP. Sensitivity is 1...3%/°C Flow temperature for heating is normally set by a heating curve or it is constant for fan-coils. **This has been taken into account by use of the EN 15316-4-2 spreadsheet The shown diagram is the representation of a selected heat pump performance map at full load** 







# Dhw with HP

- Calculate only the domestic hot water part of EN 15316-4-2 (or set required heat for heating =0) to know how much heat can be produced for heating
- Calculation assumptions: store heating ON at 45°C, OFF at 50 °C
- Flow temperature 55 °C
- Athens: 831 kWh electricity  $\rightarrow$  COP = 3,20
- Oslo: **1616** kWh electricity  $\rightarrow$  COP = **2,30**
- In Oslo, the smallest heat pump is bound to domestic hot water for a couple of hours a day



### COP for dhw



A heat pump is not yet always a good idea compared to a boiler if using natural gas In any case better a heat pump than direct electric... but... See more in the following about the selection of the generation technology





The issue might be: what will happen to the building temperature ? Is there any discomfort ?



# Calculating needs

Done by EN ISO 52016 – see previous presentation by Dick van Dijk

EN-ISO 52016 will also tell you how much is the disconfort due to limited available power.

Systems in 2 passes

- 1<sup>st</sup> pass: calculate available power for heating
  - Control strategy!  $\rightarrow$  Here, heating curve  $\rightarrow$  flow temperature
  - Limiting factors  $\rightarrow$  generator + sizing of emitters

2<sup>nd</sup> pass: calculate heating system



# Heating system calculation

- A number of calculations is performed in the following and the results analyzed
- Configurations explored
  - Insulated / low or non-insulated
  - Oslo / Athens
  - Heat pump / Boiler
  - Continuous / Intermittent

... not all (!), only some relevant combinations ...



# OSLO – Low insulation Condensing boiler – Radiators

- "low insulation":  $U_{walls} = 0.80 \text{ W/m}^2\text{K}$ ,  $U_{roof} = 0.50 \text{ W/m}^2\text{K}$ , ...
- Heat load: 13,5 kW = 90 W/m<sup>2</sup> ... maximum for floor heating
- Q<sub>H;gen;out</sub> 37,030 MWh
- Q<sub>W;gen;out</sub> 3,703 MWh
- Q<sub>C;nd</sub> 0,02 MWh
- Typical application is radiators, 70/50 °C
- Heating and domestic hot water with condensing boiler



# OSLO – Low insulation Condensing boiler – Radiators



With continuous operation: 20 kW is OK No effect on indoor air temperature



### Return temperature



Condensation possible even with low external temperature and radiators (15 kW nominal power installed on heat load 13,5 kW) This result is based on radiator size and heating curve setting → optimization



#### OSLO – Low insulation

Condensing boiler – Radiators – Intermittent operation

- Same as before but with intermittent operation (17/24)
- No significant saving  $Q_{H;nd}$  37,0 MWh  $\rightarrow$  34,8 MWh 5,7%
- Higher sizing  $\rightarrow$  emitters 20 kW



Power required is significantly higher  $\rightarrow 24/17 \rightarrow$  average power + 40%



#### OSLO – Low insulation

Condensing boiler – Radiators – Intermittent operation

- Same as before but with intermittent operation
- No significant saving  $Q_{H;nd}$  37,0 MWh  $\rightarrow$  34,8 MWh 5,7%
- Comfort issues: temperature drop up to 6 °C.





#### OSLO – Low insulation

#### Condensing boiler – Radiators – Intermittent operation

#### • Same as before but with intermittent operation



| $egin{aligned} & Q_{X;gen;out} \ & \eta_{gen} \ & Q_{X;gen;in} \end{aligned}$                            | Continuous<br>40,732 MWh<br>94,5%<br>43,090 MWh | Intermittent<br>38,512 MWh<br>93,7%<br>41,071 MWh |  |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--|--|
| Part of the advantage in needs is lost in<br>the decay of efficiency.<br>This you can't see with monthly |                                                 |                                                   |  |  |  |

During recovery, power is higher: high return temperature, high temperature difference between flue gas and water return temperature → less efficiency ... and radiators have been increased from 16 to 20 kW



# OSLO – Good insulation Heat pump – Floor heating

- "Good insulation":  $U_{walls} = 0,22 \text{ W/m}^2\text{K}$ ,  $U_{roof} = 0,11 \text{ W/m}^2\text{K}$ , ...
- Heat load: 4,7 kW = 30 W/m<sup>2</sup>
- Q<sub>H;gen;out</sub> 7,98 MWh
- Q<sub>W;gen;out</sub> 3,703 MWh
- Q<sub>C;nd</sub> 0,75 MWh
- COP<sub>H</sub> = 2,88
- COP<sub>W</sub> = 2,30
- Possible application is floor heating or low temp radiators
- Heating and domestic hot water with heat pump





## OSLO – Well insulated HP – Floor heating





## OSLO – Well insulated HP – Floor heating





## OSLO – Well insulated HP 4 – Floor heating



The smallest heat pump is very tightly sized



### OSLO – Well insulated HP 4 – Floor heating



The smallest heat pump is very tightly sized Temperature is not maintained only during one day and when the domestic hot water store has to be reloaded



# COP<sub>H</sub> of the heat pump



Part load penalizes COP in the warmer months Spread of points at lower temperatures is reduced because the HP is at high load



## Athens – Non insulated HP 4 – Fan coils

- "Non insulated":  $U_{walls} = 1,1 \text{ W/m}^2\text{K}$ ,  $U_{roof} = 1,1 \text{ W/m}^2\text{K}$ , ...
- Heat load: 8,5 kW = 57 W/m<sup>2</sup>
- Q<sub>H;gen;out</sub> 9,79 MWh
- Q<sub>W;gen;out</sub> 2,66 MWh
- Average COP<sub>H</sub>: 3,36
- Average COP<sub>w</sub>: 3,20





### Athens – Non insulated HP 4 – Fan coils



Insufficient sizing



### Athens – Non insulated HP 4 – Fan coils



Part load penalizes COP in the warmer months Spread of points at lower temperatures is reduced because the HP is at high load


## Athens – Non insulated HP 4 – Floor heating

- "Non insulated":  $U_{walls} = 1,1 \text{ W/m}^2\text{K}$ ,  $U_{roof} = 1,1 \text{ W/m}^2\text{K}$ , ...
- Heat load: 8,5 kW = 57 W/m<sup>2</sup>
- Q<sub>H;gen;out</sub> 9,87 MWh
- Q<sub>W;gen;out</sub> 2,66 MWh
- Average COP<sub>H</sub>: 5,15
- Average COP<sub>w</sub>: 3,20





#### Athens – Non insulated HP 4 – Floor heating



Insufficient sizing  $\rightarrow$  The heaty pump may be sized for cooling in that region...



## Athens – Non insulated HP 4 – Floor heating



Part load penalizes COP in the warmer months Spread of points at lower temperatures is reduced because the HP is at high load



## Athens – Non insulated HP – Floor heating



#### Operating conditions matter!



#### Some remarks

EN standards and hourly method allow to estimate the energy needs and the efficiency of complex systems, taking into account the dynamic interaction between building envelope and systems.

The hourly method can help identify the correct sizing of a heat pump and how much back-up is required, taking into account heat gains, the interaction with the building envelope and the risk of disconfort.

Heat pumps are very sensitive to operating conditions. EN standards do take them fully into account.

Intermittent use has heavy implications on sizing and operating conditions, much less on energy needs, at least in the residential sector.

But be careful: if the building and systems don't conform to specification, if the systems are not properly commissioned, if the gains are not correctly estimated ... other results than designed will be obtained ...



# Is energy performance the whole story?

There are several ways to weight delivered energy : attention is shifting from non-renewable primary energy to CO<sub>2</sub> emission.

However, efficiency focuses only on the operation phase. A lot of resources are incorporated during the construction of efficient buildings and systems.

Example: is it worth to spend thousands of Euros for a more efficient system when the whole yearly cost is some hundreds Euros?

Calculation standards are great **tools**. If EN hourly calculation methods are used correctly you can extract a lot of useful information and design a great energy performance....

But then in the real world...

- are you sure that the building and systems will be correctly commissioned and used?
- is that heating curve properly set for that heat pump in that building?
- are we back-checking the operational results of our designs ?

#### A good design with a reliable calculation method is just the beginning of the story...



*EPB Center is also 'available' for specific services requested by individual or clusters of stakeholders* 

More information on the set of EPB standards: <u>www.epb.center</u> Contact: info@epb.center

Parts of this document have been produced under a contract with the European Union, represented by the European Commission (Service contract ENER/C3/2017-437/SI2-785.185).

**Disclaimer:** The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

#### Thank you!





#### Submit your question!

