

Next Gen. EPC Conference – May 23<sup>rd</sup> 2024 – Olivier GRESLOU (CSTB)

**EPC RECAST :** Innovative workflow and digital toolbox to support the implementation of new generation of EPCs for residential buildings

## The overall EPC RECAST process

. . .





# EPC RECAST in a nutshell

## Innovative process and digital toolbox to develop and validate a new generation of EPCs for residential buildings

 $\checkmark$  To facilitate and improve working practices of EPC assessors  $\rightarrow$  quality and reliability of EPCs

 $\checkmark$  To tailor renovation recommendations, highlight benefits for **building owners**  $\rightarrow$  **user-centric** approach









Non-energy benefits



# **OUR TEAM**







# **Project objectives**

- Supporting the work of EPC assessors to improve reliability of EPCs : data collection, quality checks, model calibration
- Developing a prototype of cloud system toolbox for EPC assessors and a new generation of EPCs
- Co-designing the EPC assessment process with owners and assessors : interactive user-centered design approach
- Improving renovation recommendations in EPCs with renovation roadmaps and additional indicators
- Collecting recommendations from public authorities and industrial stakeholders : advisory board and mirror group



Workload for EPC assessor:  $\leq$  half a day of on-site work, off-site work  $\leq$  on-site work

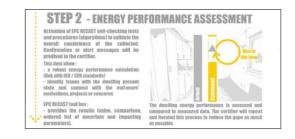






## The EPC RECAST Steps

**STEP 1 – Data Collection and Inspection Process** 


TARGET : Duration ≤ 0.5 day, on-site

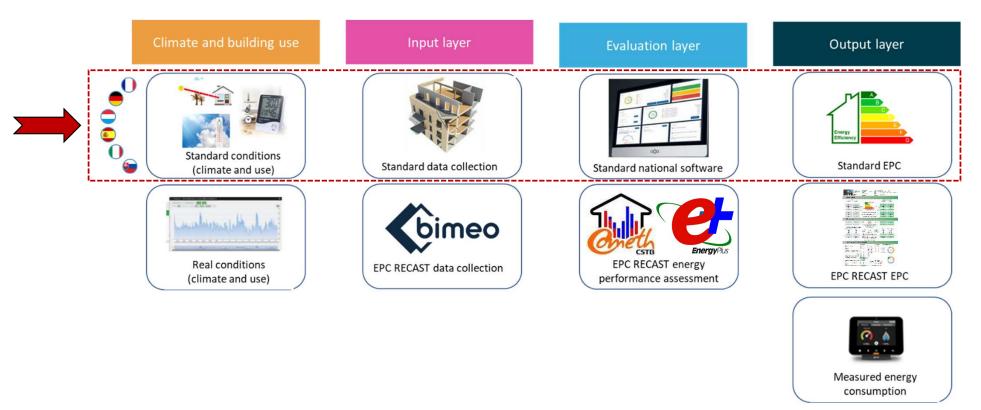
**STEP 2** – Energy Performance Assessment *TARGET : Step 2 + Step 3 ≤ 0.5 day, back at the office* 

STEP 3 – Certification & Renovation Roadmap

TARGET : Step 2 + Step  $3 \le 0.5$  day, back at the office





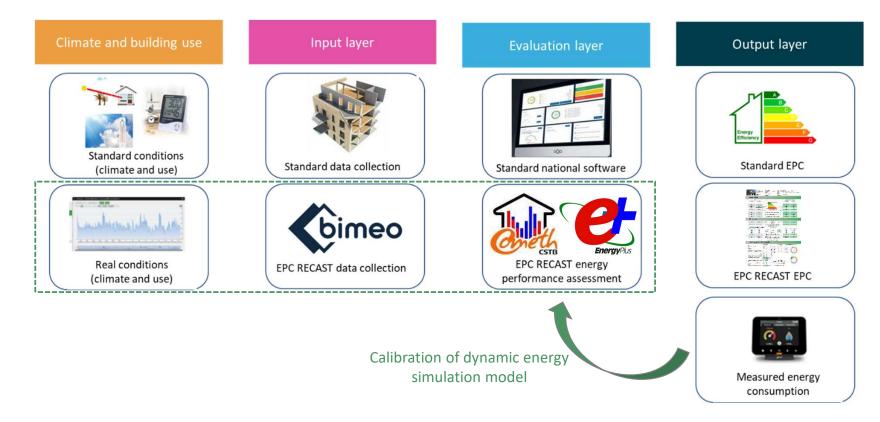









### The standard EPC evaluation process : data and layers

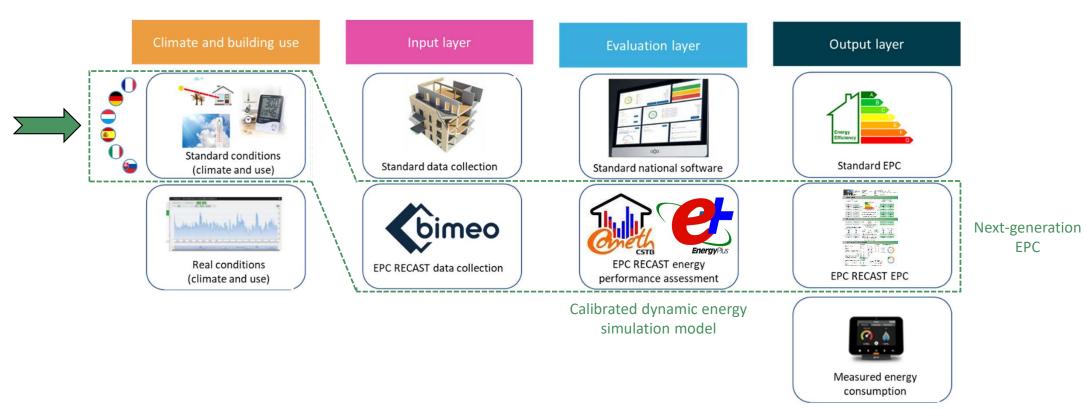









#### The EPC RECAST evaluation process : step 1

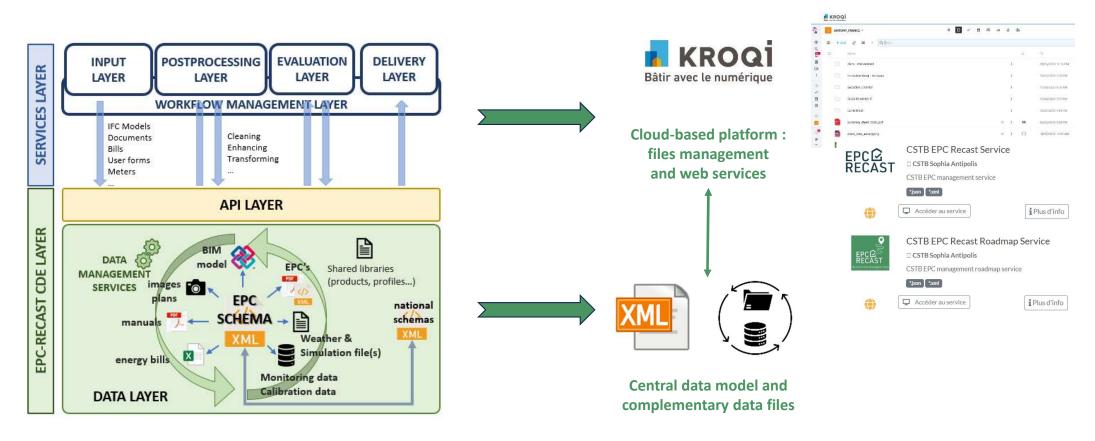









### The EPC RECAST evaluation process : step 2

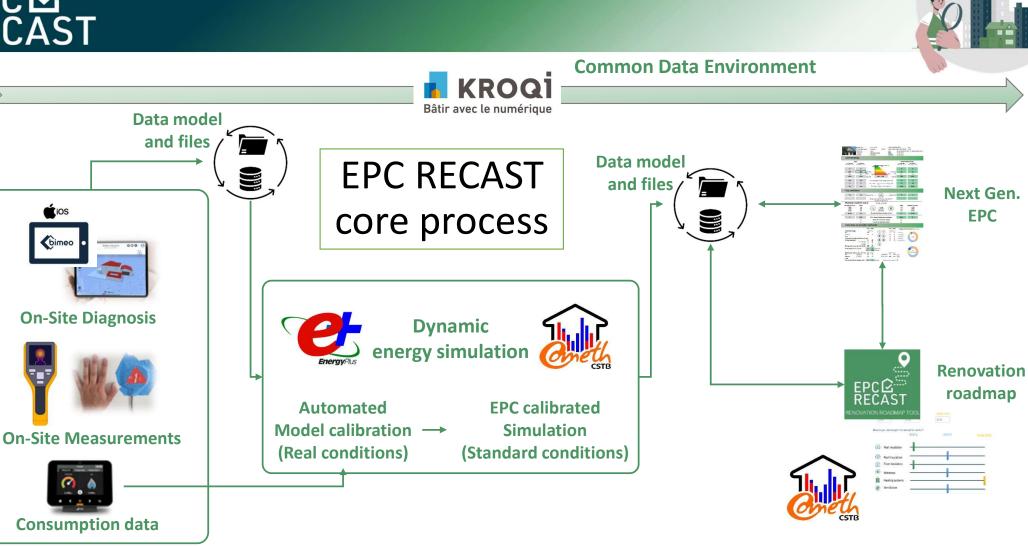









#### Integrated data and services : Common Data Environment






This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement number 893118. The European Union is not liable for any use that may be made of the

information contained in this document, which is merely representing the authors' view.











## EPC RECAST supporting the EPBD RECAST

- $\checkmark$  Article 4. Methodology for calculating the EP
- $\rightarrow$  Computing cores for dynamic EP calculation
- $\rightarrow$  Model calibration and operational rating
- ✓ Article 9. Trajectories for progressive renovation
- ✓ Article 12. Renovation passport
- ightarrow Quick renovation roadmap tool



- ✓ Article 16. Data exchange → Common data environment
- RROQI
- Article 17. Financial incentives
- $\rightarrow$  KPIs before and after renovation on the EPC





- $\rightarrow$  EPBD RECAST compliant template
- $\rightarrow$  Digital tool for on-site visits





- ✓ Article 20. Issue of EPCs
- $\rightarrow$  Simulation data model and report



- ✓ Article 22. Databases for the EP
- $\rightarrow$  Common data model of the building

### STEP 1 – On-Site data collection



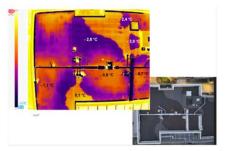




### Technologies for data collection

Main difficulties for real data collection about the dwelling:




- Often inaccurate evaluation of the building dimensions
- High variability of data collection practices and results
- High uncertainties in the assessment of the envelope thermal characteristics & energy systems


#### What are EPC RECAST's major contributions?

New tools and technologies to facilitate and enrich the on-site data collection

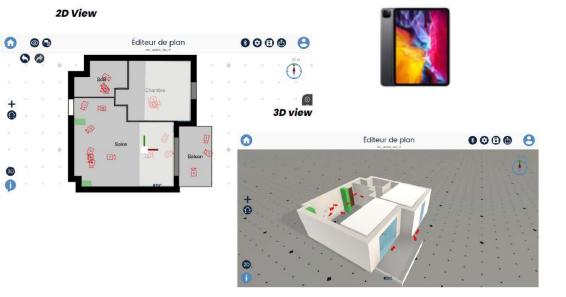











## EPC 🖸 RECAST



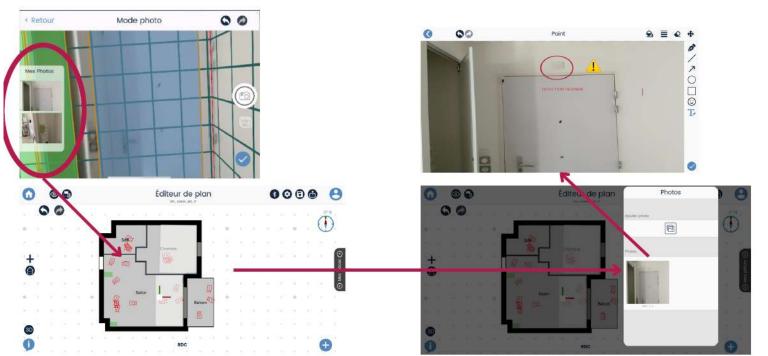
The BIMEO technology for the digitization of the dwelling

- Augmented-reality technology based on Ipad + Lidar sensor
- Fast geometrical scan to generate a reliable BIM-model of the dwelling with precise dimensions
- Integrated questionnaires to facilitate observations of the envelope and energy systems and centralize information
- ✓ Fast data collection
- Automated connection with energy simulation software












#### On-site inspection of the building

#### The BIMEO technology for the digitization of the dwelling

Adding georeferenced photos to the building plan



#### **Annotation of photos**







### Specific measurements : thermal characteristics of the envelope

#### Difficult assessments for EPC assessors :

- Lack of technical documentation dating back to construction or previous renovations
- Visual observations : insufficient to characterize wall materials and thermal bridges
- EPC assessors cannot take samples of wall materials

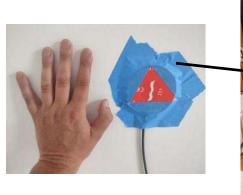
Default values in national EPC methods strongly decrease the simulated energy performance

Reference values based on typical walls and materials

Measuring the performance of the building envelope

Additional measurements could be used to evaluate infiltration rates and heat losses through walls to get heat transfer coefficients (« U values »)






## EPC 2 RECAST



### Thermal characteristics of the envelope : using heat-flux meters

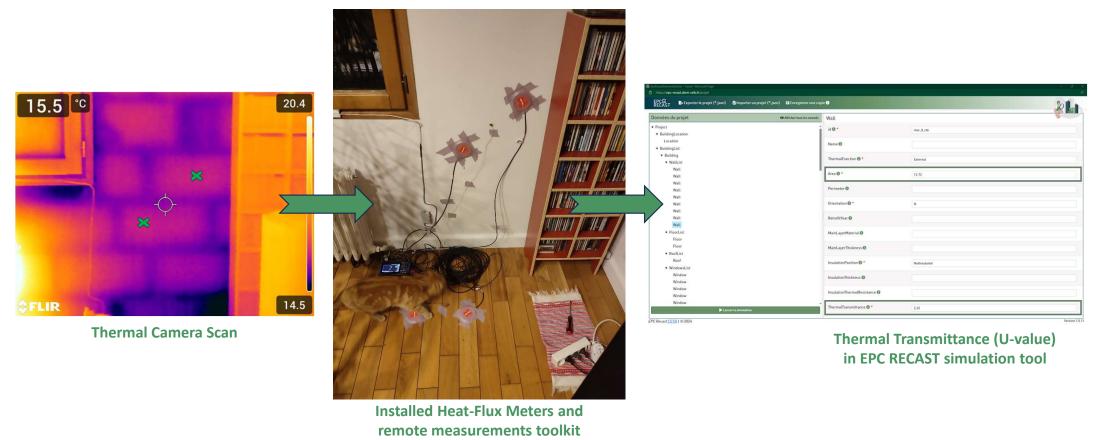








Sampled dwellings in multifamily building


- Heat-flux meters + sensors to measure indoor and outdoor temperatures
- Analysis based on ISO 9869
- Duration of measurements : 7 days with low impact on househoulds
- Temperature difference between outside and inside > 10°C
- Use of a thermal camera to position heat-flux meters at the right place



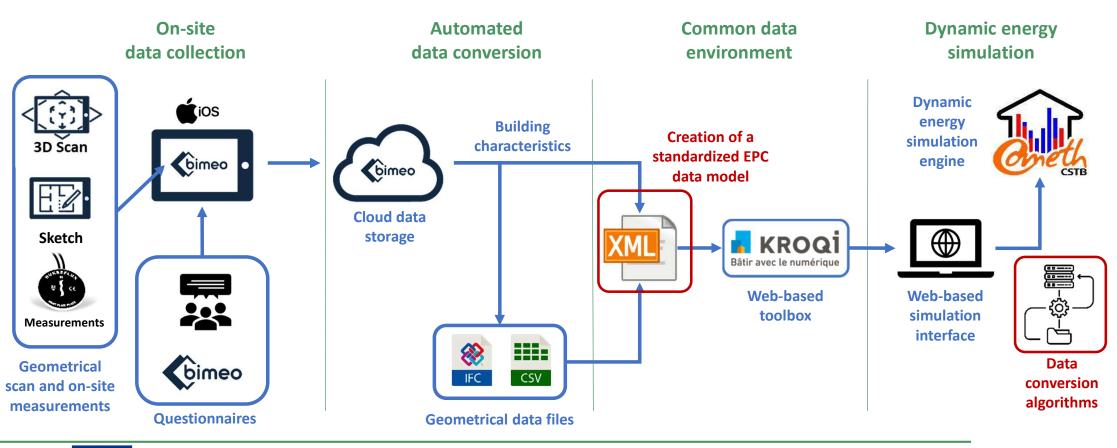




### Getting the U-Value of the wall : Example on a pilot house






## STEP 2 – Energy performance assessment





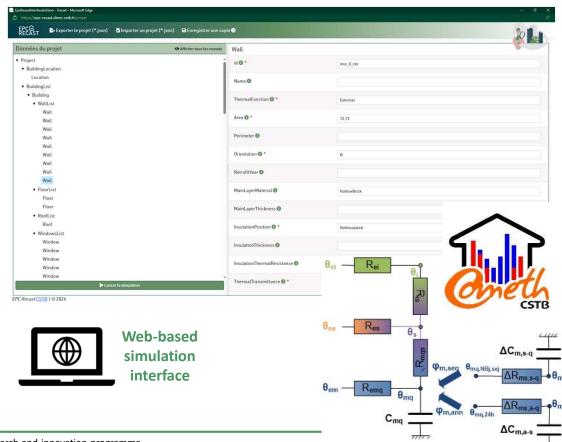


#### From data collection to dynamic energy simulation





This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement number 893118. The European Union is not liable for any use that may be made of the


information contained in this document, which is merely representing the authors' view.





## EPC RECAST tool for dynamic energy simulation

- Online interface with simple set of input data
   → equivalent to datasets in national EPC software
   (simplified simulations, monthly or annual time steps)
- Automated connexion with detailed computing core for dynamic EP assessment, hourly time step
- Reads and updates the EPC RECAST XML data model
- ✓ Easy-to-use, quick setup
- $\checkmark$  Takes into account thermal inertia of the envelope
- ✓ Allows detailed simulations of HVAC systems from very little information (eg : heat pumps)

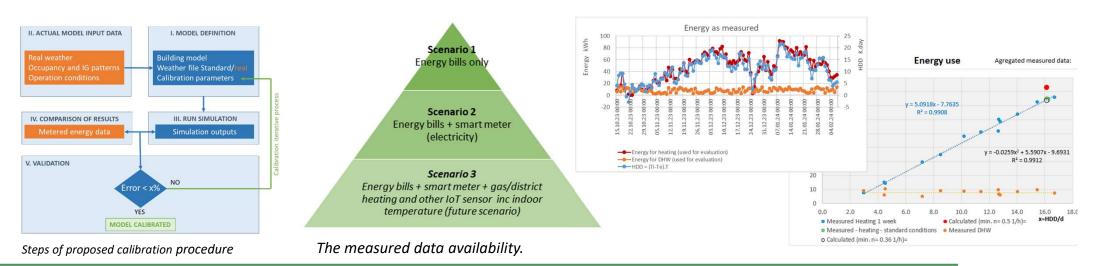








## Mitigating the gap between calculated and measured energy


Two approaches have been developed and tested:

#### 1. Calibration procedure

**Iterative process for asset rating** – actual input data model definition – run simulation – comparison of results with metered data

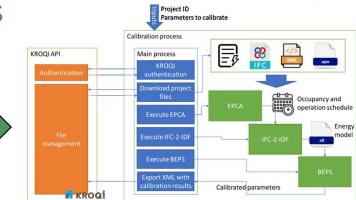
#### 2. Operational rating for heating and DHW

**Normalisation of measured energy to standard conditions** Test on measured data in WP3 (SK pilot buildings), Link to EN 15378-3:2017







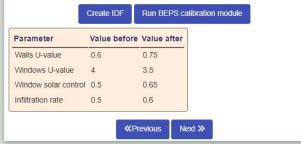



### Guided automated calibration of parameters

# Performance gap between calculated and measured data

- EPC energy models are not reliable enough
- ightarrow conclusions are not valid
- Reliable predictions through simulations to evaluate improvement measures and define bestvalue renovation roadmap

Online toolbox with step-by-step process






Necessary to reduce the performance gap to ensure reliable results

Calibration of main uncertain parameters



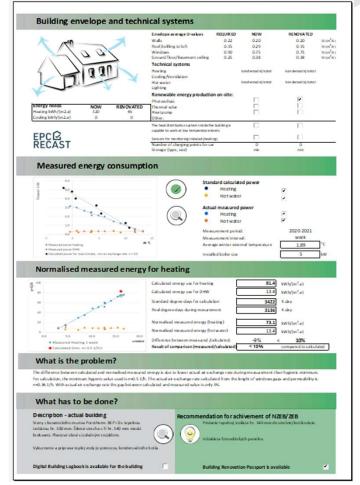




## STEP 3 – Certification and Roadmap




## EPC 🖸 RECAST


## Next Gen EPC Template

The 2024 EPBD recast: IAQ, new performance indicators

#### New performance indicators :

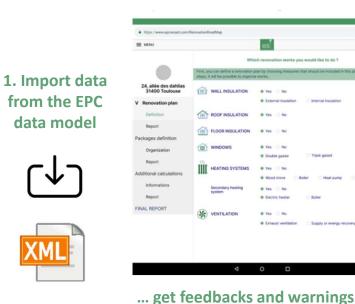
- Thermal comfort score
- Smart readiness indicator (SRI)
- Metered energy, energy signature, operational rating
- Costs reporting taking into account the owner-tenant dilemma.














#### Renovation Roadmap : fast evaluation based on the EPC data

01

Test CSTB .



#### 2. Select your renovation works

| E MENU                                  |                                              |                             |                                     | Test CSTB   |  |  |  |
|-----------------------------------------|----------------------------------------------|-----------------------------|-------------------------------------|-------------|--|--|--|
|                                         |                                              | St                          | eps definition                      |             |  |  |  |
|                                         | Here you can choose h<br>corresponding step. | ow to organize works : pack | ages and time scale. Put each slide | r under the |  |  |  |
| 24, allée des dahlias<br>31400 Toulouse | How many steps conta                         | in your plan ?              |                                     |             |  |  |  |
| Renovation plan                         | 3                                            | •                           |                                     |             |  |  |  |
| Definition                              | When do you plan to d                        | o each STEP 7               |                                     |             |  |  |  |
| Report                                  | 2025                                         | 2030                        | 2035                                |             |  |  |  |
| V Packages definition                   | Maw do you plan to call                      | it the renovation works ?   |                                     |             |  |  |  |
| Organization                            |                                              | STEP 1                      | STEP 2                              | FINAL STATE |  |  |  |
| Report                                  | 1 Wall insulat                               | tion                        |                                     |             |  |  |  |
| Additional calculations                 | ~                                            |                             |                                     |             |  |  |  |
| Informations                            | Roof insula Floor insula                     |                             |                                     |             |  |  |  |
| Report                                  | Windows                                      |                             |                                     |             |  |  |  |
| FINAL REPORT                            | Heating sys                                  | tems                        |                                     | -           |  |  |  |
|                                         | ( Ventilation                                |                             |                                     |             |  |  |  |

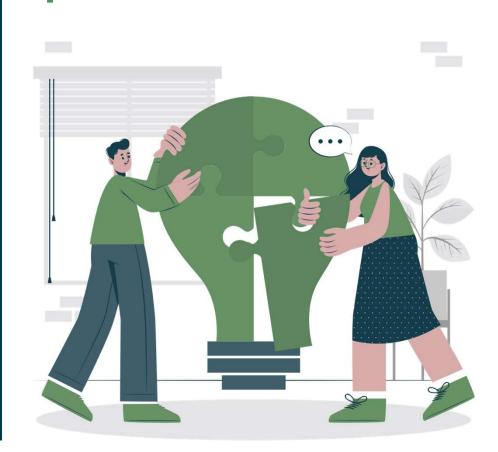
3. Split your works into steps

#### ... and simulation results





#### 4. Get your final Renovation Roadmap


|                                                      |       | 1                                             |             | 2                               |                |
|------------------------------------------------------|-------|-----------------------------------------------|-------------|---------------------------------|----------------|
| Energy class = D<br>Consumption = 242<br>kWhitPlants | 4     | Consumption = 1                               |             | Energy class :<br>Consumption : |                |
| CO2-eq emissions = 40 kpm2                           | m 🛋   | CO2-eq emissions = R                          | 24<br>pm2an | CO2-eq emissions                | = 2<br>kpim2an |
| Costs:<br>Operation = 2.4 ker<br>Investment = 0 ke   | -     | Costs:<br>Operation = 1.6<br>Investment = 21. |             |                                 | = 0.7 keter    |
| Comfort:<br>Themal = 1.9<br>Bright = 3               |       | Comfort<br>Themal = 2<br>Bright =             | 2,5%        | Comfort.<br>Thermal<br>Bright   | = 3s<br>= 3s   |
| SRI Score =                                          | · (?) | SRI Score = .                                 | 0 × 🖓       | SRI Score                       | = s (?)        |
|                                                      |       | <b>C</b> @ @                                  | 2025        | в 🖩 🔏                           | 2028           |

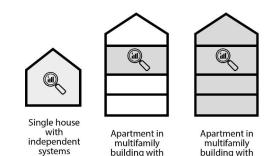


This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement number 893118. The European Union is not liable for any use that may be made of the information contained in this document, which is merely representing the authors' view.

Risks A Warnings 🔅 Opportunities

## Applying EPC RECAST on pilot buildings








# **Pilot** activities

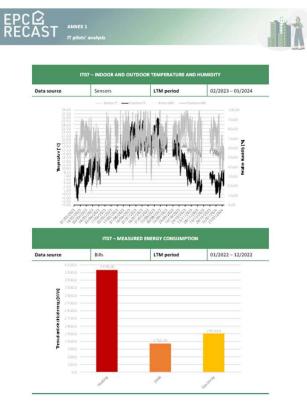
- The EPC RECAST toolbox and process has been tested on more than 55 pilot sites : 3 multi-family buildings, 40 apartments and 12 single-family houses spread over the 6 participating countries
- By sucontracted EPC assessors and project partners (2022-2024)
- Next-generation EPCs are delivered at dwelling or building scale
- Long-term monitoring has been implemented in 50% of the pilot dwellings (2021-2023)



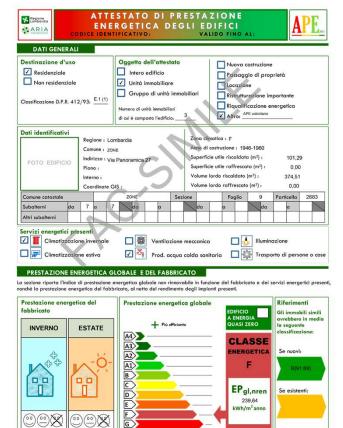


independent

systems


shared

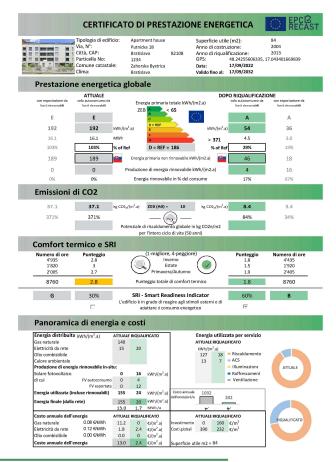
systems






#### Long Term Monitoring




**Standard EPC** 



- Mono efficiente

Pag. 1

**EPC Recast EPC** 





This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement number 893118. The European Union is not liable for any use that may be made of the

information contained in this document, which is merely representing the authors' view.





### Examples of pilot results (Italy)



| Energy use | Long-Term<br>Monitoring<br>primary energy<br>[kWh/m²y] | KROQI<br>simulation<br>primary energy<br>[kWh/m²y] | Standard EPC<br>primary energy<br>[kWh/m²y] | Variation<br>between KROQI<br>simulation and<br>Standard EPC<br>(Standard EPC<br>as baseline) |  |
|------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Total      | 427.06                                                 | 396.17                                             | 344.64                                      | + 15%                                                                                         |  |
| Heating    | 393.15                                                 | 310.28                                             | 316.86                                      | - 2%                                                                                          |  |
| Cooling    | -                                                      | 55.38                                              | 1.16                                        | -                                                                                             |  |
| DHW        | 33.91                                                  | 27.20                                              | 26.62                                       | + 2%                                                                                          |  |



| Energy use | Long-Term<br>Monitoring<br>primary energy<br>[kWh/m²y] | KROQI<br>simulation<br>primary energy<br>[kWh/m²y] | Standard EPC<br>primary energy<br>[kWh/m²y] | Variation<br>between KROQI<br>simulation and<br>Standard EPC<br>(Standard EPC<br>as baseline) |
|------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|
| Total      | 142.61                                                 | 252.26                                             | 315.75                                      | - 20%                                                                                         |
| Heating    | 124.17                                                 | 229.01                                             | 298.00                                      | - 23%                                                                                         |
| Cooling    | -                                                      | -                                                  | -                                           | -                                                                                             |
| DHW        | 18.44                                                  | 19.74                                              | 17.75                                       | + 11%                                                                                         |



This project has received funding from the European Union's Horizon 2020 research and innovation programme

under the grant agreement number 893118. The European Union is not liable for any use that may be made of the

information contained in this document, which is merely representing the authors' view.

## Key Conclusions







# EPC RECAST proves that:

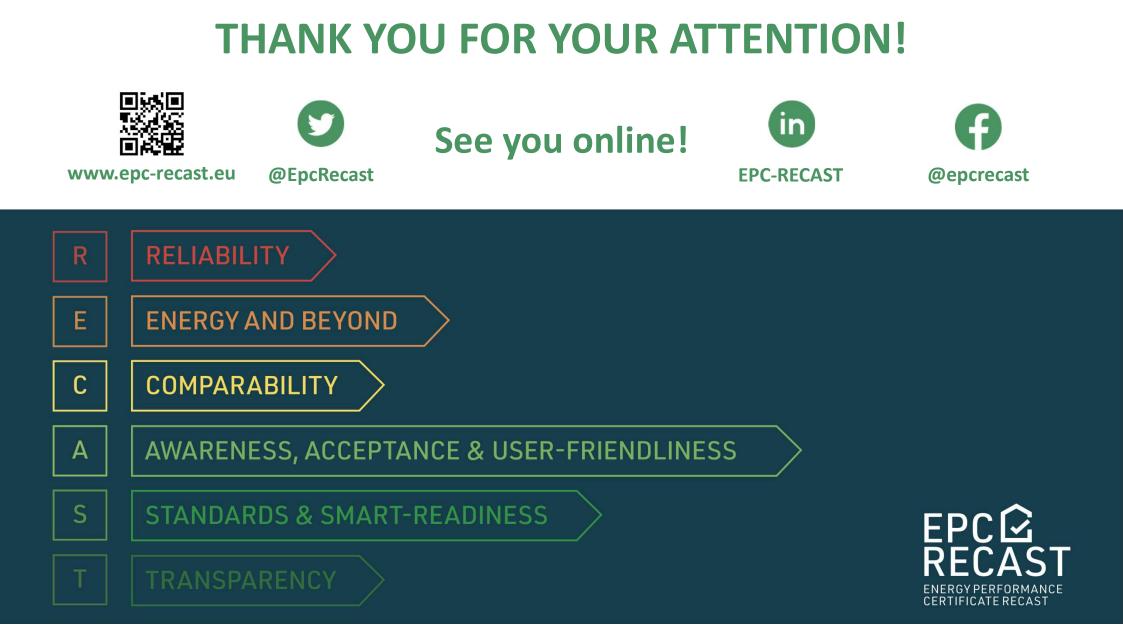
#### ✓ Integrated workflows to improve the <u>daily work of EPC assessors</u> are already feasible:

- $\checkmark\,$  a common data model of the building
- $\checkmark\,$  a set of digital services and measurement protocols

Reporting tools from the EPBD can be made interoperable and delivered jointly:

- ✓ improved EPCs, simplified Renovation Roadmaps, automated simulation reports
- ✓ based on a common data model of the building
- $\checkmark$  Detailed hourly simulations can be made accessible to assessors :
  - ✓ without requesting the evaluation of more parameters
  - ✓ through data conversion algorithms
- ✓ Innovative digital tools can already facilitate on-site visits and data collection

✓ Implementation on national markets : IT development strategies and data standardization are now needed






|                                                      |   | 1                                                      |      |                             |         |
|------------------------------------------------------|---|--------------------------------------------------------|------|-----------------------------|---------|
| tray in . D                                          |   | tempter i C                                            | L    | treprim i                   | B       |
| Consumption = 242<br>EDME/Partie                     |   | Consumption = 140                                      | -    | Consumption in Auron        | 70 view |
| CO2-eq emissions = 43<br>kgin2a                      | í | CO2-eq emissions = 24<br>kprdar                        | 1    | CO2-eq emissions =          | 2 J     |
| Costs:<br>Operation = 2.4 iets<br>Investment = 0 iet | 8 | Costs<br>Operation = 1.6 etcar<br>Investment = 21.6 ac |      |                             | 7 нен 🖁 |
| Comfort<br>Themai = 1.9-<br>Bright = 3-              | ۲ | Confet<br>Themai # 2.5s<br>Begit # 3s                  | ۲    | Confot<br>Trana :<br>BrgH : | 31 C    |
| SRI Score a                                          | 0 | 5RI Score = s                                          | 2    | SRI Score =                 | - S (2  |
|                                                      |   | C @ @                                                  | 2005 | B 11.25                     | 200     |





